

20 Rules For OOP In Delphi

by Marco Cantu

I\/I ost Delphi programmers use
their development environ-

ment as they would use Visual
Basic [Editor throws his hands up in
horror at the mere thought!], with-
out realising and taking advantage
of the power they have at their
hands. Delphiis based on an object
oriented architecture, which does
not only impact the VCL structure
but also each and every Delphi
application.

In this article | don’t want to
cover the theory of OOP, but just
suggest some simple rules which
might help you improve the struc-
ture of your programs. These rules
of thumb should be considered as
suggestions, to be applied or not
depending on the actual type of
application you are building. My
suggestion is simply to keep them
in mind.

The key principle | want to
underline is encapsulation. We
want to create flexible and robust
classes, which will allow us to
change the implementation later
on without affecting the rest of the
program. This is not the only
criterion for good OOP, but it
represents the foundation, so if |
actually over-stressitinthisarticle
I have some good reasons to do so.

Finally, to underline the fact that
these principles should be used in
our daily work by all of us Delphi
programmers, I'm going to focus
mainly on the development of
forms, even if some of the rules
equally apply to the development
of components. Those who write
components must consider OOP
and classes as a central element.
Those who use components at
times forget about OOP: this article
can be considered as a reminder.

Part 1. A Form Is A Class

Programmers usually treat forms
as objects, while in fact they are
classes. The difference is that you
can have multiple form objects
based on the same form class. The
confusing thing is that Delphi

creates a default global object for
every form class you define. This is
certainly handy for newcomers,
but can turn into a bad habit.

Rule 1: One Class, One Unit
Always remember that the private
and protected portions of a class
are hidden only to classes and pro-
cedures in other units. Therefore,
if you want to have an effective
encapsulation you should use a
different unit for every class. For
simple classes, inheriting one from
the other, you can actually use a
shared unit, but only if the number
of classes is limited: Don’t place a
20-classes complex hierarchy in a
single unit, even if Borland does it
in the VCL source code...

If you think about forms, Delphi
follows the ‘one class, one unit’
principle by default, which is
certainly handy. When adding
non-form classes to a project,
create new separate units.

Rule 2: Name Components

Itis very important to give a mean-
ingful name to each form and each
unit. Unluckily the two names must
be different, although | tend to use
similar names for the two, such as
AboutForm and About.pas.

It's important to use descriptive
names for components too. The
most common notation is to use a
few lower case initial letters for the
class type, followed by the role of
the component, as in btnAdd or
editName. There are actually many
similar notations following this
style and there is really no reason
to say any one of them is best, it’s
up to your personal taste.

Rule 3: Name Events

It is even more important to give
proper names to event handling
methods. If you name the compo-
nents properly, the default name
of ButtonlClick, for example,
becomes btnAddC1ick. Although we
can guess what the method does
from the button name, | think it is

The Delphi Magazine

way better to use a name describ-
ing the effect of the method, not
the attached component. For
example, the 0nClick event of the
btnAdd button can be named
AddToList. This makes the code
more readable, particularly when
you call the event handler from
another method of the class, and
helps developers attach the same
method to multiple events or to
different components, although |
have to say that using Actions is
currently my preferred choice for
non-trivial programs.

Rule 4: Use Form Methods

If forms are classes their code is
collected in methods. Besides the
event handlers, which play a spe-
cial role but can still be called as
other methods, it is often useful to
add custom methods to form
classes. You can add methods per-
forming actions and accessing to
the status of the form. It is much
better to add a public method to a
form than to let other forms
operate on its components
directly.

Rule 5:

Add Form Constructors

A secondary form created at
runtime can provide other specific
constructors beside the default
one (inherited form the TComponent
class). If you don’t need compati-
bility with versions of Delphi prior
to 4, my suggestion is to overload
the Create method, adding the
required initialisation parameters.
Listing 1 gives an example.

Rule 6:
Avoid Global Variables
Global variables (that is, variables
declared in the interface portion
of a unit) should be avoided. Here
are a few suggestions to help you
do this.

If you need extra data storage for
a form, add some private fields to
it. In this case each form instance
will have its own copy of the data.

Issue 47

You might use unit variables
(declared in the {implementation
portion of the unit) for data shared
among multiple instances of the
form class.

If you need data shared among
forms of different types, you can
share them by placing the data in
the main form, or in aglobal object,
and use methods or properties to
access the data.

Rule 7:

Never Use Form1l In TForm1l
You should never refer to a specific
object in a method of the class of
that object. In other words, never
refer to Forml in a method of the
TForml class. If you need to refer to
the current object, use the self
keyword. Keep in mind that most of
the time this is not needed, as you
can refer directly to methods and
data of the current object.

If you don’t follow this rule,
you’ll get into trouble when you
create multiple instances of the
form.

Rule 8: Seldom Use

Form1 In Other Forms
Eveninthe code of other forms, try
to avoid direct references to global
objects, such as Forml. It is much
better to declare local variables or
private fields to refer to other
forms.

For example, the main form of a
program can have a private field
referring to adialog box. Obviously
this rule becomes essential if you
plan creating multiple instances of
the secondary form. You can keep
a list in a field of the main form, or
simply use the Forms array of the
global Screen object.

Rule 9: Remove Form1
Actually, my suggestion is to
remove the global form object
which is automatically added by
Delphi to the program. This is pos-
sible only if you disable the auto-
matic creation of that form (again
added by Delphi), something
which | suggest you should get rid
of anyway.

| think that removing the global
form object is very useful for
Delphinewcomers, who thenwon’t
get confused between the class

10

public

constructor Create (Text: string); reintroduce; overload;
constructor TFormDialog.Create(Text: string);

begin
inherited Create (Application);
Editl.Text := Text;

end;

0 Listing 1

private
function GetText: String;

procedure SetText(const Value: String);

public
property Text: String
read GetText write SetText;
function TFormDialog.GetText: String;
begin
Result := Editl.Text;
end;

procedure TFormDialog.SetText(const Value: String);

begin
Editl.Text := Value;
end;

O Listing 2: You can add a property to a form to expose a property of

a component.

and the global object anymore. In
fact, after the global object has
been removed, any reference to it
will result in an error.

Rule 10: Add Form Properties

As I've already mentioned, when
you need dataforaform,addapri-
vate field. If you need to access this
data from other classes, then add
properties to the form. With this
approach you will be able to
change the code of the form and its
data (including its user interface)
without having to change the code
of other forms or classes.

You should also use properties
or methods to initialise a second-
ary form or dialog box, and to read
its final state. The initialisation
can also be performed using a
constructor, as | have already
described.

Rule 11: Expose

Components Properties

When you need to access the
status of another form, you should
not refer directly to its compo-
nents. This would bind the code of
other forms or classes to the user
interface, which is one of the por-
tions of an application subject to
most changes. Rather, declare a
form property mapped to the com-
ponent property: this is accom-
plished with a Get method that
reads the component status and a
Set method that writes it.

The Delphi Magazine

Suppose you now change the
user interface, replacing the com-
ponent with another one. All you
have to do is fix the Get and Set
methods related with the prop-
erty, you won’t have to check and
modify the source code of all the
forms and classes which might
refer to that component. You can
see an example in Listing 2.

Rule 12: Array Properties

If you need to handle a series of
values in a form, you can declare
an array property. In case thisis an
importantinformation for the form
you can make it also the default
array property of the form, so that
you candirectly access its value by
writing SpecialForm[3].

Listing 3 shows how you can
expose the items of a listbox as the
default array property of the form
hosting it.

Rule 13:

Use Side-Effects In Properties
Remember that one of the advan-
tages of using properties instead of
accessing global data is that you
can cause side-effects when writ-
ing (or reading) the value of a
property.

For example, you can draw
directly on the form surface, set
the values of multiple properties,
call special methods, change the
status of multiple components at
once, or fire an event, if available.

Issue 47

type
TFormDialog = class(TForm)
private
ListItems: TListBox;

function GetItems(Index: Integer): string;
procedure SetItems(Index: Integer; const Value: string);

public

property Items[Index: Integer]: string read GetItems write SetlItems; default;
end;

function TFormDialog.GetItems(Index: Integer): string;

begin

if Index >= ListItems.Items.Count then

raise Exception.Create('TFormDialog: Out of Range');

Result := ListItems.Items [Index];
end;

procedure TFormDialog.SetItems(Index: Integer; const Value: string);

begin

if Index >= ListItems.Items.Count then

raise Exception.Create('TFormDialog: Out of Range');

ListItems.Items [Index]
end;

:= Value;

0 Listing 3: The definition of a default array property in a form.

procedure TComponent.SetReference(Enable: Boolean);

var
Field: ATComponent;
begin
if FOwner <> nil then begin
Field := FOwner.FieldAddress(FName);
if Field <> nil then
if Enable then
Fieldr := Self
else
Field* := nil;
end;
end;

0 Listing 4: The VCL code used to hook a component to its reference in

the owner form.

Rule 14: Hide Components
Too often | hear OOP purists com-
plaining because Delphi forms
include the list of the components
in the published section, an
approach that doesn’t conform to
the principle of encapsulation.
They are actually pointing out an
important issue, but most of them
seem to be unaware that the solu-
tion is at hand without rewriting
Delphi or changing the language.

The component references
which Delphi adds to a form can be
moved to the private portion, so
that they won’t be accessible by
other forms. This way you can
make compulsory the use of prop-
erties mapped to the components
(see Rule 11 above) to access their
status.

If Delphi places all the compo-
nents in the published section, this
is because of the way these fields
are bound to the components cre-
ated from the .DFM file. When you
set a component’s name the VCL
automatically attaches the compo-
nent object to its reference in the
form. This is possible only if the
reference is published, because

14

Delphi uses RTTI and TObject
methods to perform this.

If you want to understand the
details, refer to Listing 4, which has
the code of the SetReference
method of the TComponent class,
which is called by InsertComponent,
RemoveComponent and SetName

Once you know this, you realise
that by moving the component ref-
erences from the published to the
private section you lose this auto-
matic behaviour. To fix the prob-
lem, simply make it manual, by
adding the following code for each
component in the OnCreate event
handler of the form:

Editl := FindComponent(‘Editl’)
as TEdit;

The second operation you have to
do is register the component
classes in the system, so that their
RTTl information is included in the
compiled program and made avail-
able to the system. This is needed
only once for every component
class, and only if you move all the
component references of this type
to the private section. You can add

The Delphi Magazine

this call evenifitisnotrequired, as
an extracall to the RegisterClasses
method is harmless. The Register-
Classes method is usually added to
the initialization section of the
unit hosting the form:

RegisterClasses([TEdit]);

Rule 15:

The OOP Form Wizard
Repeating the two operations
above for every component of
every form is certainly boring and
time consuming. To avoid this
excessive burden, I've written a
simple wizard which generates the
lines of code to add to the program
in a small window. You’ll need to
do two simple copy and paste
operations for each form.

The wizard doesn’t automati-
cally place the source code in the
proper location: I'm working to fix
this and you can check my website
(www.marcocantu.com) for an
updated version.

Part 2: Inheritance

After afirst set of rules devoted to
classes, and particularly form
classes, here comes another short
list of suggestions and tips related
to inheritance and visual form
inheritance.

Rule 16:

Visual Form Inheritance

This is a powerful mechanism, if
used properly. From my experi-
ence, its value grows with the size
of the project. In a complex pro-
gram you can use the hierarchical
relationship among forms to
operate on groups of forms with
polymorphism.

Visual form inheritance allows
you to share the common behav-
iour of multiple forms: you can
have common methods, proper-
ties, event handlers, components,
component properties, compo-
nent event handlers, and so on.

Rule 17: Limit Protected Data
When building a hierarchy of
classes, some programmers tend
to use mainly protected fields, as
private fields are not accessible by
subclasses. | won’t say this is
always wrong, but it is certainly

Issue 47

against encapsulation. The imple-
mentation of protected data is
shared among all inherited forms,
and you might have to update all of
them in case the original definition
of the data changes.

Notice that if you follow the rule
of hiding components (Rule 14) the
inherited forms can’'t possibly
access the private components of
the base class. Inan inherited form,
code suchasEditl.Text := “*; will
not be compiled anymore. | can see
this might not be terribly handy,
but at least in theory it should be
regarded as a positive thing, not
negative. If you feel this is too
much of a concession to encapsu-
lation, declare the component ref-
erences in the protected section of
the base form.

Rule 18:

Protected Access Methods

It is much better, instead, to keep
the component references in the
private section and add access
functions to their properties to the
base class. If these access func-
tions are used only internally and
are not part of the class interface,
you should declare them as pro-
tected. For example, the GetText
and SetText form methods
described in Rule 11 can become
protected and we could access the
edit text by calling:

SetText(‘’);

Actually, as the method was
mapped to a property, we can
simply write:

Text := ‘"3

Rule 19:

Protected Virtual Methods
Another key point to have aflexible
hierarchy is to declare virtual

methods you can call from the
external classes to obtain
polymorphism. If this is a common
approach, it is less frequent to see
protected virtual methods, called
by other public methods. Thisisan
important technique, as you can
customise the virtual method in a
derived class, modifying the
behaviour of the objects.

Rule 20: Virtual

Methods For Properties

Even property access methods can
be declared as virtual, so that a
derived class can change the
behaviour of the property without
having to redefine it. This
approach is seldom used by the
VCL butis very flexible and power-
ful. To accomplish this, simply
declare as virtual the Get and Set
methods of Rule 11. The base form
will have the code of Listing 5.

In the inherited form you can
now override the virtual method
SetText, to add some extra
behaviour:

procedure TFormInherit.SetText(
const Value: String);

begin
inherited SetText (Value);
if Value = “’ then
Buttonl.Enabled := False;
end;
The Code

All the code fragments in this arti-
cle can be found in the OopDemo
example project, included on this
month’s disk. You should check in
particular the secondary form (in
the frm2 unit) and the derived one
(in the inher unit). Notice that in
order to use, at the same time, a
custom constructor with initialis-
ation code and the private compo-
nent references, it is necessary to
set the 01dCreateOrder property of

0 Listing 5: A form with properties implemented with virtual methods.

type
TFormDialog = class(TForm)

procedure FormCreate(Sender: TObject);

private
Editl: TEdit;
protected
function GetText: String; virtual;

procedure SetText(const Value: String); virtual;

public

constructor Create (Text: string); reintroduce; overload;

end

July 1999

property Text: String read GetText write SetText;
nd;

The Delphi Magazine

the form. Otherwise the initialis-
ation code in the form constructor
(which uses the components) will
be executed before the OnCreate
method of the form, which con-
nects the references to the actual
components.

On the disk you’ll also find the
compiled package of a first draft
version of the OOP Form Wizard,
but you should (hopefully) be able
to find a more complete version on
my website.

Conclusion

Programming in Delphi according
to good OOP principles is far from
obvious, as some of the rules I've
listed highlight. | don’t think that
you should consider all of my rules
compulsory, as some of them
might stretch your patience. The
rules should be applied in the
proper context, and become more
and more important as the size of
the application grows, along with
the number of programmers work-
ing on it. Even for smaller pro-
grams, however, keeping in mind
the OOP principles underlying my
rules (encapsulation before all
others) can really help.

There are certainly many other
rules of thumb you can come up
with, as | haven’t tried to get into
memory handling and RTTI issues,
which are so complex to deserve
specific articles.

My conclusion is that following
the rules I've highlighted has a
cost, in terms of extra code: it is
the price you have to pay to obtain
a more flexible and robust pro-
gram. It is the price of object ori-
ented programming. Let’'s hope
that future Delphi versions help us
reduce that price.

Marco Cantu is the author of the
Mastering Delphi series, Delphi
Developer’s Handbook, and of
the free online book Essential
Pascal. He teaches classes on
Delphi foundations and advanced
topics. Check his website at
www.marcocantu.com for more
information. You can reach him
on his public newsgroups: see the
website for details.

15

Essential Pascal

www.marcocantu.com

. Marco's Delphi Books
Essential Pascal - Web Site
Essential Pascal - Local Index

Marco Cantu's
Essential Pascal Introduction

October 1, 1999: Book is on Delphi 5 Companion CD.
Source Code available. Examples list added.

Book Cover. Apollo, the god worshipped at Delphi,
in an Italian 17th century fresco.

The first few editions of Mastering Delphi, the best selling Delphi book I've written, provided an introduction to the Pascal language in
Delphi. Due to space constraints and because many Delphi programmers look for more advanced information, in the latest edition
this material was completely omitted. To overcome the absence of this information, I've started putting together this online book,
titled Essential Pascal.

This is a detailed book on Pascal, which for the moment will be available for free on my web site (I really don't know what will
happen next, | might even find a publisher). This is a work in progress, and any feedback is welcome. The first complete version of
this book, dated July '99, has been published on the Delphi 5 Companion CD.

Copyright

The text and the source code of this book is copyrighted by Marco Cantu. Of course you can use the programs and adapt them to

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

your own needs, only you are not allowed to use them in books, training material, and other copyrighted formats. Feel free to link
your site with this one, but please do not duplicate the material as it is very subject to frequent changes and updates.

The Book Structure

The following is the current structure of the book:

. Chapter 1: Pascal History

. Chapter 2: Coding in Pascal

. Chapter 3: Types, Variables, and Constants
. Chapter 4: User-Defined Data Types

. Chapter 5: Statements

. Chapter 6: Procedures and Functions

. Chapter 7: Handling Strings

. Chapter 8: Memory (and Dynamic Arrays)
. Chapter 9: Windows Programming

. Chapter 10: Variants

. Chapter 11: Programs and Units

. Appendix A: Glossary of terms

. Appendix B: Examples

Source Code

The source code of all the examples mentioned in the book is available. The code has the same Copyright as the book: Feel free to
use it at will but don't publish it on other documents or site. Links back to this site are welcome.

Download the source code in a single zip file, EPasCode.zip (only 26 KB in size) and check out the list of the examples.

Feedback

Please let me know of any errors you find, but also of topics not clear enough for a beginner. I'll be able to devote time to the project
depending also on the feedback | receive. Let me know also which other topics (not covered in Mastering Delphi 4) you'd like to see
here. Again, hook onto the newsgroup, listed on my web site, and look for the books section, or mail to marco@marcocantu.com

(putting Essential Pascal in the subject (and your request or comment in the text).

Acknowledgements

If I'm publishing a book on the web for free, | think this is mainly due to Bruce Eckel's experience with Thinking in Java. I'm a friend
of Bruce and think he really did a great job with that book and few others.

As | mentioned the project to people at Borland | got a lot of positive feedback as well. And of course | must thank the company for
making first the Turbo Pascal series of compilers and now the Delphi series of visual IDEs.

I'm starting to get some precious feedback. The first readers who helped improving this material quite a lot are Charles Wood and
Wyatt Wong. Mark Greenhaw helped with some editing the text. Rafael Barranco-Droege offered a lot of technical corrections and
language editing. Thanks.

file:///D|/Mastering%20Delphi%206/Essential%20Pascal/epascal_v1_Book/EPasCode.zip
mailto:marco@marcocantu.com

Essential Pascal

Author

Marco Cantu lives in Piacenza, Italy. After writing C++ and Object Windows Library books and articles, he delved into Delphi
programming. He is the author of the Mastering Delphi book series, published by Sybex, as well as the advanced Delphi Developers
Handbook. He writes articles for many magazines, including The Delphi Magazine, speaks at Delphi and Borland conferences around
the world, and teaches Delphi classes at basic and advanced levels.

You can find more details about Marco and his work on his web site, www.marcocantu.com.

© Copyright Marco Cantu, Wintech ltalia Srl 1995-2000

http://www.marcocantu.com/

Essential Pascal
. Www.marcocantu.com

MﬁR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

www marcocantu com

Marco Cantu's Chapter 1
Essential Pascal Pascal History

The Object Pascal programming language we use in Delphi wasn't invented in 1995 along with the Borland visual development
environment. It was simply extended from the Object Pascal language already in use in the Borland Pascal products. But Borland
didn't invent Pascal, it only helped make it very popular and extended it a little...

This chapter will contain some historical background on the Pascal language and its evolution. For the moment it contains only
very short summaries.

Wirth's Pascal

The Pascal language was originally designed in 1971 by Niklaus Wirth, professor at the Polytechnic of Zurich, Switzerland. Pascal was
designed as a simplified version for educational purposes of the language Algol, which dates from 1960.

When Pascal was designed, many programming languages existed, but few were in widespread use: FORTRAN, C, Assembler,
COBOL. The key idea of the new language was order, managed through a strong concept of data type, and requiring declarations
and structured program controls. The language was also designed to be a teaching tool for students of programming classes.

Turbo Pascal

Borland's world-famous Pascal compiler, called Turbo Pascal, was introduced in 1983, implementing "Pascal User Manual and Report"
by Jensen and Wirth. The Turbo Pascal compiler has been one of the best-selling series of compilers of all time, and made the
language particularly popular on the PC platform, thanks to its balance of simplicity and power.

Turbo Pascal introduced an Integrated Development Environment (IDE) where you could edit the code (in a WordStar compatible
editor), run the compiler, see the errors, and jump back to the lines containing those errors. It sounds trivial now, but previously you
had to quit the editor, return to DOS; run the command-line compiler, write down the error lines, open the editor and jump there.

Moreover Borland sold Turbo Pascal for 49 dollars, where Microsoft's Pascal compiler was sold for a few hundred. Turbo Pascal's
many years of success contributed to Microsoft's eventual cancellation of its Pascal compiler product.

Delphi's Pascal

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

After 9 versions of Turbo and Borland Pascal compilers, which gradually extended the language, Borland released Delphi in 1995,
turning Pascal into a visual programming language.

Delphi extends the Pascal language in a number of ways, including many object-oriented extensions which are different from other
flavors of Object Pascal, including those in the Borland Pascal with Objects compiler.

Next Chapter: Coding in Pascal

© Copyright Marco Cantu, Wintech ltalia Srl 1995-2000

Essential Pascal

. Www.marcocantu.com

MﬁR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

www marcocantu com

Marco Cantu's Chapter 2
Essential Pascal Coding in Pascal

Before we move on to the subject of writing Pascal language statements, it is important to highlight a couple of elements of Pascal
coding style. The question I'm addressing here is this: Besides the syntax rules, how should you write code? There isn't a single
answer to this question, since personal taste can dictate different styles. However, there are some principles you need to know
regarding comments, uppercase, spaces, and the so-called pretty-printing. In general, the goal of any coding style is clarity. The style
and formatting decisions you make are a form of shorthand, indicating the purpose of a given piece of code. An essential tool for
clarity is consistency-whatever style you choose, be sure to follow it throughout a project.

Comments

In Pascal, comments are enclosed in either braces or parentheses followed by a star. Delphi also accepts the C++ style comments,
which can span to the end of the line:

{this is a comment}
(* this is another comment *)
/1 this is a corment up to the end of the |ine

The first form is shorter and more commonly used. The second form was often preferred in Europe because many European
keyboards lack the brace symbol. The third form of comments has been borrowed from C++ and is available only in the 32-bit
versions of Delphi. Comments up to the end of the line are very helpful for short comments and for commenting out a line of code.

In the listings of the book I'll try to mark comments as italic (and keywords in bold), to be consistent with the default Delphi
syntax highlighting.

Having three different forms of comments can be helpful for making nested comments. If you want to comment out several lines of
source code to disable them, and these lines contain some real comments, you cannot use the same comment identifier:

{ ... code
{comrent, creating probl ens}
code }

With a second comment identifier, you can write the following code, which is correct:

{ ... code

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

//this conmrent is K
code }

Note that if the open brace or parenthesis-star is followed by the dollar sign ($), it becomes a compiler directive, as in {$X+}.

Actually, compiler directives are still comments. For example, {$X+ This is a comment} is legal. It's both a valid directive and a
comment, although sane programmers will probably tend to separate directives and comments.

Use of Uppercase

The Pascal compiler (unlike those in other languages) ignores the case (capitalization) of characters. Therefore, the identifiers
Myname, MyName, myname, myName, and MYNAME are all exactly equivalent. On the whole, this is definitely a positive, since in
case-sensitive languages, many syntax errors are caused by incorrect capitalization.

Note: There is only one exception to the case-insensitive rule of Pascal: the Register procedure of a components' package must
start with the uppercase R, because of a C++Builder compatibility issue.

There are a couple of subtle drawbacks, however. First, you must be aware that these identifiers really are the same, so you must
avoid using them as different elements. Second, you should try to be consistent in the use of uppercase letters, to improve the
readability of the code.

A consistent use of case isn't enforced by the compiler, but it is a good habit to get into. A common approach is to capitalize only the
first letter of each identifier. When an identifier is made up of several consecutive words (you cannot insert a space in an identifier),
every first letter of a word should be capitalized:

MyLongl denti fier
MyVer yLongAndAl nost St upi dl dentifi er

Other elements completely ignored by the compiler are the spaces, new lines, and tabs you add to the source code. All these
elements are collectively known as white space. White space is used only to improve code readability; it does not affect the
compilation.

Unlike BASIC, Pascal allows you to write a statement on several lines of code, splitting a long instruction on two or more lines. The
drawback (at least for many BASIC programmers) of allowing statements on more than one line is that you have to remember to add
a semicolon to indicate the end of a statement, or more precisely, to separate a statement from the next one. Notice that the only
restriction in splitting programming statements on different lines is that a string literal may not span several lines.

Again, there are no fixed rules on the use of spaces and multiple-line statements, just some rules of thumb:

. The Delphi editor has a vertical line you can place after 60 or 70 characters. If you use this line and try to avoid surpassing
this limit, your source code will look better when you print it on paper. Otherwise long lines may get broken at any position,
even in the middle of a word, when you print them.

. When a function or procedure has several parameters, it is common practice to place the parameters on different lines.

. You can leave a line completely white (blank) before a comment or to divide a long piece of code in smaller portions. Even
this simple idea can improve the readability of the code, both on screen and when you print it.

. Use spaces to separate the parameters of a function call, and maybe even a space before the initial open parenthesis. Also
keep operands of an expression separated. | know that some programmers will disagree with these ideas, but | insist:
Spaces are free; you don't pay for them. (OK, | know that they use up disk space and modem connection time when you
upload or download a file, but this is less and less relevant, nowadays.)

Essential Pascal

Pretty-Printing

The last suggestion on the use of white spaces relates to the typical Pascal language-formatting style, known as pretty-printing. This
rule is simple: Each time you need to write a compound statement, indent it two spaces to the right of the rest of the current
statement. A compound statement inside another compound statement is indented four spaces, and so on:

if ... then

st at enent ;
if ... then
begin

st at enent 1;
st at enent 2;

end;
if ... then
begi n

if ... then

statenent 1;
st at enent 2;
end;

The above formatting is based on pretty-printing, but programmers have different interpretations of this general rule. Some
programmers indent the begin and end statements to the level of the inner code, some of them indent begin and end and then
indent the internal code once more, other programmers put the begin in the line of the if condition. This is mostly a matter of
personal taste.

A similar indented format is often used for lists of variables or data types, and to continue a statement from the previous line:

type

Letters = set of Char;
var

Nane: string;
begin

{ long comment and | ong statenent, going on in the
following line and i ndented two spaces }
MessageDl g (' This is a nessage',
m | nformation, [nmbCk], 0);

Of course, any such convention is just a suggestion to make the code more readable to other programmers, and it is completely
ignored by the compiler. I've tried to use this rule consistently in all of the samples and code fragments in this book. Delphi source
code, manuals, and Help examples use a similar formatting style.

Syntax Highlighting

To make it easier to read and write Pascal code, the Delphi editor has a feature called color syntax highlighting. Depending on the
meaning in Pascal of the words you type in the editor, they are displayed using different colors. By default, keywords are in bold,
strings and comments are in color (and often in italic), and so on.

Reserved words, comments, and strings are probably the three elements that benefit most from this feature. You can see at a glance
a misspelled keyword, a string not properly terminated, and the length of a multiple-line comment.

Essential Pascal

You can easily customize the syntax highlight settings using the Editor Colors page of the Environment Options dialog box (see Figure
2.1). If you work by yourself, choose the colors you like. If you work closely with other programmers, you should all agree on a
standard color scheme. | find that working on a computer with a different syntax coloring than the one | am used to is really difficult.

FIGURE 2.1: The dialog box used to set the color syntax highlighting.

Environment Options Ed |

Browzer I Code [nzight I Explorer | Type Librany

Freferences I Library I E ditor I Drizplay Calar | Falette
Color SpeedSetting: I Crefaultz |
Element: Colar: — Text attnbutes:

Eman
EE?Q::QL wiord | T ltlie _
|dentifier . . . [~ Underline
gjtrlrli-rn'lbgul . . — Usze defaults for:
Murmber [¥ Foreground
Azzembler ;I .. ¥ Backgound

{ Svntax Highlighting } (=
procedure TForml.ButtonlClick(3ender: TObhjec
rar
Number, I, X: Integer:;
hegin
Mumbher == 1235A: bl
<] | _'*I_I

Cancel | Help

Note: In this book I've tried to apply a sort of syntax highlighting to the source code listings. | hope this actually makes them more
readable.

Using Code Templates

Delphi 3 introduced a new feature related to source code editing. Because when writing Pascal language statements you often repeat
the same sequence of keywords, Borland has provided a new feature called Code Templates. A code template is simply a piece of
code related with a shorthand. You type the shorthand, then press Ctrl+J, and the full piece of code appears. For example, if you
type arrayd, and then press Ctrl+J, the Delphi editor will expand your text into:

array [0..] of

Since the predefined code templates usually include several versions of the same construct, the shortcut generally terminates with a

Essential Pascal

letter indicating which of the versions you are interested in. However, you can also type only the initial part of the shortcut. For
example, if you type ar and then press Ctrl+J, the editor will display a local menu with a list of the available choices with a short
description, as you can see in Figure 2.2.

Figure 2.2: Code Templates selection

& Unitl_pas _ O]

Uit | - o -

ﬂ TForm1 :I

5

array declaration [«war) arrayd -

ery

] o

| 23 3 |Modified Inzert v

You can fully customize the code templates by modifying the existing ones or adding your own common code pieces. If you do this,
keep in mind that the text of a code template generally includes the '|' character to indicate where the cursor should jump to after
the operation, that is, where you start typing to complete the template with custom code.

Language Statements

Once you have defined some identifiers, you can use them in statements and in the expressions that are part of some statements.
Pascal offers several statements and expressions. Let's look at keywords, expressions, and operators first.

Keywords

Keywords are all the Object Pascal reserved identifiers, which have a role in the language. Delphi's help distinguishes between
reserved words and directives: Reserved words cannot be used as identifiers, while directives should not be used as such, even if the
compiler will accept them. In practice, you should not use any keywords as an identifier.

In Table 2.1 you can see a complete list of the identifiers having a specific role in the Object Pascal language (in Delphi 4), including
keywords and other reserved words.

Table 2.1: Keywords and other reserved words in the Object Pascal language

Keyword \ Role \
absolute directive (variables)

abstract directive (method)

Essential Pascal

and operator (boolean)

array type

as operator (RTTI)

asm statement

assembler backward compatibility (asm)
at statement (exceptions)
automated access specifier (class)

begin block marker

case statement

cdecl function calling convention
class type

const declaration or directive (parameters)
constructor special method

contains operator (set)

default directive (property)
destructor special method

dispid dispinterface specifier
dispinterface [type

div operator

do statement

downto statement (for)

dynamic directive (method)

else statement (if or case)

end block marker

except statement (exceptions)
export backward compatibility (class)
exports declaration

external directive (functions)

far backward compatibility (class)
file type

finalization unit structure

finally statement (exceptions)

for statement

forward function directive

function declaration

goto statement

if statement

implementation

unit structure

implements directive (property)

in operator (set) - project structure
index directive (dipinterface)

inherited statement

initialization unit structure

inline backward compatibility (see asm)
interface type

Essential Pascal

is operator (RTTI)

label declaration

library program structure
message directive (method)

mod operator (math)

name directive (function)

near backward compatibility (class)
nil value

nodefault directive (property)

not operator (boolean)

object backward compatibility (class)
of statement (case)

on statement (exceptions)

or operator (boolean)

out directive (parameters)
overload function directive

override function directive

package program structure (package)
packed directive (record)

pascal function calling convention
private access specifier (class)
procedure declaration

program program structure
property declaration

protected access specifier (class)
public access specifier (class)
published access specifier (class)
raise statement (exceptions)
read property specifier
readonly dispatch interface specifier
record type

register function calling convention

reintroduce

function directive

repeat statement

requires program structure (package)
resident directive (functions)
resourcestring Jtype

safecall function calling convention
set type

shl operator (math)

shr operator (math)

stdcall function calling convention
stored directive (property)

string type

then statement (if)

Essential Pascal

threadvar declaration

to statement (for)

try statement (exceptions)
type declaration

unit unit structure

until statement

uses unit structure

var declaration

virtual directive (method)
while statement

with statement

write property specifier
writeonly dispatch interface specifier
Xor operator (boolean)

Expressions and Operators

There isn't a general rule for building expressions, since they mainly depend on the operators being used, and Pascal has a number
of operators. There are logical, arithmetic, Boolean, relational, and set operators, plus some others. Expressions can be used to
determine the value to assign to a variable, to compute the parameter of a function or procedure, or to test for a condition.
Expressions can include function calls, too. Every time you are performing an operation on the value of an identifier, rather than
using an identifier by itself, that is an expression.

Expressions are common to most programming languages. An expression is any valid combination of constants, variables, literal
values, operators, and function results. Expressions can also be passed to value parameters of procedures and functions, but not
always to reference parameters (which require a value you can assign to).

Operators and Precedence

If you have ever written a program in your life, you already know what an expression is. Here, I'll highlight specific elements of
Pascal operators. You can see a list of the operators of the language, grouped by precedence, in Table 2.1.

Contrary to most other programming languages, the and and or operators have precedence compared to the relational one. So if
you write a < b and ¢ < d, the compiler will try to do the and operation first, resulting in a compiler error. For this reason you
should enclose each of the < expression in parentheses: (a < b) and (c < d).

Some of the common operators have different meanings with different data types. For example, the + operator can be used to add
two numbers, concatenate two strings, make the union of two sets, and even add an offset to a PChar pointer. However, you cannot
add two characters, as is possible in C.

Another strange operator is div. In Pascal, you can divide any two numbers (real or integers) with the / operator, and you'll invariably
get a real-number result. If you need to divide two integers and want an integer result, use the div operator instead.

Table 2.2: Pascal Language Operators, Grouped by Precedence

Unary Operators (Highest Precedence)

Essential Pascal

@ Address of the variable or function (returns a pointer)

not | Boolean or bitwise not
Multiplicative and Bitwise Operators ‘

* Arithmetic multiplication or set intersection

/ Floating-point division

div | Integer division

mod | Modulus (the remainder of integer division)

as | Allows a type-checked type conversion among at runtime (part of the RTTI support)

and | Boolean or bitwise and

shl | Bitwise left shift

shr | Bitwise right shift
Additive Operators ‘

+ Arithmetic addition, set union, string concatenation, pointer offset addition

- Arithmetic subtraction, set difference, pointer offset subtraction

or Boolean or bitwise or

xor | Boolean or bitwise exclusive or

tional and Comparison Operators (Lowest Precedence)

= Test whether equal

<> | Test whether not equal

< Test whether less than

> Test whether greater than

<= | Test whether less than or equal to, or a subset of a set

>= | Test whether greater than or equal to, or a superset of a set

in Test whether the item is a member of the set

is Test whether object is type-compatible (another RTTI operator)

Set Operators

The set operators include union (+), difference (-), intersection (*),membership test (in), plus some relational operators. To add an
element to a set, you can make the union of the set with another one that has only the element you need. Here's a Delphi example
related to font styles:

Style :
Style :

Style + [fsBol d];
Style + [fsBold, fsltalic] - [fsUnderline];

As an alternative, you can use the standard Include and Exclude procedures, which are much more efficient (but cannot be used with
component properties of the set type, because they require an I-value parameter):

Include (Style, fsBold);

Essential Pascal

Conclusion

Now that we know the basic layout of a Pascal program we are ready to start understanding its meaning in detail. We'll start by
exploring the definition of predefined and user defined data types, then we'll move along to the use of the keywords to form
programming statements.

Next Chapter: Types, Variables, and Constants

© Copyright Marco Cantu, Wintech ltalia Srl 1995-2000

Essential Pascal

. Www.marcocantu.com

H AR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

wWww marcocantu.com

Chapter 3
Marco Cantu's Types, Variables, and
Essential Pascal Constants

The original Pascal language was based on some simple notions, which have now become quite common in programming languages.
The first is the notion of data type. The type determines the values a variable can have, and the operations that can be performed on
it. The concept of type is stronger in Pascal than in C, where the arithmetic data types are almost interchangeable, and much
stronger than in the original versions of BASIC, which had no similar concept.

Variables

Pascal requires all variables to be declared before they are used. Every time you declare a variable, you must specify a data type.
Here are some sample variable declarations:

var
Val ue: | nteger;
I sCorrect: Bool ean;
A, B: Char;

The var keyword can be used in several places in the code, such as at the beginning of the code of a function or procedure, to
declare variables local to the routine, or inside a unit to declare global variables. After the var keyword comes a list of variable names,
followed by a colon and the name of the data type. You can write more than one variable name on a single line, as in the last
statement above.

Once you have defined a variable of a given type, you can perform on it only the operations supported by its data type. For example,
you can use the Boolean value in a test and the integer value in a numerical expression. You cannot mix Booleans and integers (as
you can with the C language).

Using simple assignments, we can write the following code:

Val ue : = 10;
| sCorrect := True;

But the next statement is not correct, because the two variables have different data types:

Value := IsCorrect; // error

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

If you try to compile this code, Delphi issues a compiler error with this description: Incompatible types: ‘'Integer' and '‘Boolean'.
Usually, errors like this are programming errors, because it does not make sense to assign a True or False value to a variable of the
Integer data type. You should not blame Delphi for these errors. It only warns you that there is something wrong in the code.

Of course, it is often possible to convert the value of a variable from one type into a different type. In some cases, this conversion is
automatic, but usually you need to call a specific system function that changes the internal representation of the data.

In Delphi you can assign an initial value to a global variable while you declare it. For example, you can write:

var
Val ue: | nteger = 10;
Correct: Bool ean = True;

This initialization technique works only for global variables, not for variables declared inside the scope of a procedure or method.

Constants

Pascal also allows the declaration of constants to name values that do not change during program execution. To declare a constant
you don't need to specify a data type, but only assign an initial value. The compiler will look at the value and automatically use its
proper data type. Here are some sample declarations:

const
Thousand = 1000;
Pi = 3.14;

Aut hor Nane = 'Marco CantU';

Delphi determines the constant's data type based on its value. In the example above, the Thousand constant is assumed to be of
type Smallint, the smallest integral type which can hold it. If you want to tell Delphi to use a specific type you can simply add the
type name in the declaration, as in:

const
Thousand: | nteger = 1000;

When you declare a constant, the compiler can choose whether to assign a memory location to the constant, and save its value there,
or to duplicate the actual value each time the constant is used. This second approach makes sense particularly for simple constants.

Note: The 16-bit version of Delphi allows you to change the value of a typed constant at run-time, as if it was a variable. The 32-
bit version still permits this behavior for backward compatibility when you enable the $J compiler directive, or use the
corresponding Assignable typed constants check box of the Compiler page of the Project Options dialog box. Although this is the
default, you are strongly advised not to use this trick as a general programming technique. Assigning a new value to a constant
disables all the compiler optimizations on constants. In such a case, simply declare a variable, instead.

Resource String Constants

When you define a string constant, instead of writing:

const
Aut hor Nane = 'Marco Cantu';

Essential Pascal

starting with Delphi 3 you can write the following:

resourcestring
Aut hor Nane = 'Marco Cantu';

In both cases you are defining a constant; that is, a value you don't change during program execution. The difference is only in the
implementation. A string constant defined with the resourcestring directive is stored in the resources of the program, in a string table.

To see this capability in action, you can look at the ResStr example, which has a button with the following code:

resourcestring
Aut hor Nane = 'Marco Cantu';
BookNane = 'Essential Pascal';

Launch Example

procedure TForml. ButtonlC i ck(Sender: TCObject);
begin

ShowMessage (BookName + #13 + Aut hor Nane) ;
end;

The output of the two strings appears on separate lines because the strings are separated by the newline character (indicated by its
numerical value in the #13 character-type constant).

The interesting aspect of this program is that if you examine it with a resource explorer (there is one available among the examples
that ship with Delphi) you'll see the new strings in the resources. This means that the strings are not part of the compiled code but
stored in a separate area of the executable file (the EXE file).

Note: In short, the advantage of resources is in an efficient memory handling performed by Windows and in the possibility of
localizing a program (translating the strings to a different language) without having to modify its source code.

Data Types

In Pascal there are several predefined data types, which can be divided into three groups: ordinal types, real types, and strings. We'll
discuss ordinal and real types in the following sections, while strings are covered later in this chapter. In this section I'll also introduce
some types defined by the Delphi libraries (not predefined by the compiler), which can be considered predefined types.

Delphi also includes a non-typed data type, called variant, and discussed in Chapter 10 of this book. Strangely enough a variant is a
type without proper type-checking. It was introduced in Delphi 2 to handle OLE Automation.

Ordinal Types

Ordinal types are based on the concept of order or sequence. Not only can you compare two values to see which is higher, but you
can also ask for the value following or preceding a given value or compute the lowest or highest possible value.

The three most important predefined ordinal types are Integer, Boolean, and Char (character). However, there are a number of other
related types that have the same meaning but a different internal representation and range of values. The following Table 3.1 lists
the ordinal data types used for representing numbers.

Table 3.1: Ordinal data types for numbers

Essential Pascal

Unsigned
Range
. Shortint Byte
8 bits 1128 to 127 0 to 255
. Smallint Word
16 bits -32768 to 32767 0 to 65,535
32 bits Longlnt LongWord (since Delphi 4)
-2,147,483,648 to 2,147,483,647 0 to 4,294,967,295
64 bits Int64
16/32 bits Integer Cardinal

As you can see, these types correspond to different representations of numbers, depending on the number of bits used to express the
value, and the presence or absence of a sign bit. Signed values can be positive or negative, but have a smaller range of values,
because one less bit is available for the value itself. You can refer to the Range example, discussed in the next section, for the actual
range of values of each type.

The last group (marked as 16/32) indicates values having a different representation in the 16-bit and 32-bit versions of Delphi.
Integer and Cardinal are frequently used, because they correspond to the native representation of numbers in the CPU.

Integral Types in Delphi 4

In Delphi 3, the 32-bit unsigned numbers indicated by the Cardinal type were actually 31-bit values, with a range up to 2 gigabytes.
Delphi 4 introduced a new unsigned numeric type, LongWord, which uses a truly 32-bit value up to 4 gigabytes. The Cardinal type is
now an alias of the new LongWord type. LongWord permits 2GB more data to be addressed by an unsigned number, as mentioned
above. Moreover, it corresponds to the native representation of numbers in the CPU.

Another new type introduced in Delphi 4 is the Int64 type, which represents integer numbers with up to 18 digits. This new type is
fully supported by some of the ordinal type routines (such as High and Low), numeric routines (such as Inc and Dec), and string-
conversion routines (such as IntToStr). For the opposite conversion, from a string to a number, there are two new specific functions:
StrTolnt64 and StrTolnt64Def.

Boolean

Boolean values other than the Boolean type are seldom used. Some Boolean values with specific representations are required by
Windows API functions. The types are ByteBool, WordBool, and LongBool.

In Delphi 3 for compatibility with Visual Basic and OLE automation, the data types ByteBool, WordBool, and LongBool were modified
to represent the value True with -1, while the value False is still 0. The Boolean data type remains unchanged (True is 1, False is 0).
If you've used explicit typecasts in your Delphi 2 code, porting the code to later versions of Delphi might result in errors.

Characters

Finally there are two different representation for characters: ANSIChar and WideChar. The first type represents 8-bit characters,
corresponding to the ANSI character set traditionally used by Windows; the second represents 16-bit characters, corresponding to the
new Unicode characters supported by Windows NT, and only partially by Windows 95 and 98. Most of the time you'll simply use the
Char type, which in Delphi 3 corresponds to ANSIChar. Keep in mind, anyway, that the first 256 Unicode characters correspond
exactly to the ANSI characters.

Essential Pascal

Constant characters can be represented with their symbolic notation, as in 'k’, or with a numeric notation, as in #78. The latter can
also be expressed using the Chr function, as in Chr (78). The opposite conversion can be done with the Ord function.

It is generally better to use the symbolic notation when indicating letters, digits, or symbols. When referring to special characters,
instead, you'll generally use the numeric notation. The following list includes some of the most commonly used special characters:

. #9 tabulator
. #10 newline
. #13 carriage return (enter key)

:| Launch Example

The Range Example

To give you an idea of the different ranges of some of the ordinal types, I've written a simple Delphi program named Range. Some
results are shown in Figure 3.1.

FIGURE 3.1: The Range example displays some information about ordinal data types (Integers in this case).

a1 Range M= B
Type: Integer Short Int Bute
Size: 4
Small [t Whord
b 2147483647
i 2147453643 | Jnteger Cardinal

The Range program is based on a simple form, which has six buttons (each named after an ordinal data type) and some labels for
categories of information, as you can see in Figure 3.1. Some of the labels are used to hold static text, others to show the information
about the type each time one of the buttons is pressed.

Every time you press one of the buttons on the right, the program updates the labels with the output. Different labels show the data
type, number of bytes used, and the maximum and minimum values the data type can store. Each button has its own OnClick event-
response method because the code used to compute the three values is slightly different from button to button. For example, here is
the source code of the OnClick event for the Integer button (Btninteger):

procedure TFor nRange. Bt nl nt eger d i ck(Sender: Tnject);
begi n
Label Type. Caption :
Label Si ze. Caption :
Label Max. Caption :
Label M n. Caption :
end;

"I nteger’';

Int ToStr (SizeO (Integer));
IntToStr (H gh (Integer));
IntToStr (Low (Integer));

If you have some experience with Delphi programming, you can examine the source code of the program to understand how it works.

Essential Pascal

For beginners, it's enough to note the use of three functions: SizeOf, High, and Low. The results of the last two functions are ordinals
of the same kind (in this case, integers), and the result of the SizeOf function is always an integer. The return value of each of these
functions is first translated into strings using the IntToStr function, then copied to the captions of the three labels.

The methods associated with the other buttons are very similar to the one above. The only real difference is in the data type passed
as a parameter to the various functions. Figure 3.2 shows the result of executing this same program under Windows 95 after it has
been recompiled with the 16-bit version of Delphi. Comparing Figure 3.1 with Figure 3.2, you can see the difference between the 16-
bit and 32-bit Integer data types.

FIGURE 3.2: The output of the 16-bit version of the Range example, again showing information about integers.

a1 Range [16-bit version] Mi=] E3
Type: | Fteger Shart Int Bute
Size: 2
Small Int Word
b 32767
Wi AI7EA Integer Cardinal

The size of the Integer type varies depending on the CPU and operating system you are using. In 16-bit Windows, an Integer variable
is two bytes wide. In 32-bit Windows, an Integer is four bytes wide. For this reason, when you recompile the Range example, you get
a different output.

The two different representations of the Integer type are not a problem, as long as your program doesn't make any assumptions
about the size of integers. If you happen to save an Integer to a file using one version and retrieve it with another, though, you're
going to have some trouble. In this situation, you should choose a platform-independent data type (such as Longint or Smalllnt). For
mathematical computation or generic code, your best bet is to stick with the standard integral representation for the specific platform--
that is, use the Integer type--because this is what the CPU likes best. The Integer type should be your first choice when handling
integer numbers. Use a different representation only when there is a compelling reason to do so.

Ordinal Types Routines

There are some system routines (routines defined in the Pascal language and in the Delphi system unit) that work on ordinal types.
They are shown in Table 3.2. C++ programmers should notice that the two versions of the Inc procedure, with one or two
parameters, correspond to the ++ and += operators (the same holds for the Dec procedure).

Table 3.2: System Routines for Ordinal Types

Routine Purpose

Dec Decrements the variable passed as parameter, by one or by the value of the optional second parameter.

Inc Increments the variable passed as parameter, by one or by the specified value.

Essential Pascal

Odd Returns True if the argument is an odd number.

Pred Returns the value before the argument in the order determined by the data type, the predecessor.
Succ Returns the value after the argument, the successor.

Ord Returns a number indicating the order of the argument within the set of values of the data type.
Low Returns the lowest value in the range of the ordinal type passed as its parameter.

High Returns the highest value in the range of the ordinal data type.

Notice that some of these routines, when applied to constants, are automatically evaluated by the compiler and replaced by their
value. For example if you call High(X) where X is defined as an Integer, the compiler can simply replace the expression with the
highest possible value of the Integer data type.

Real Types

Real types represent floating-point numbers in various formats. The smallest storage size is given by Single numbers, which are
implemented with a 4-byte value. Then there are Double floating-point numbers, implemented with 8 bytes, and Extended numbers,
implemented with 10 bytes. These are all floating-point data types with different precision, which correspond to the IEEE standard
floating-point representations, and are directly supported by the CPU numeric coprocessor, for maximum speed.

In Delphi 2 and Delphi 3 the Real type had the same definition as in the 16-bit version; it was a 48-bit type. But its usage was
deprecated by Borland, which suggested that you use the Single, Double, and Extended types instead. The reason for their
suggestion is that the old 6-byte format is neither supported by the Intel CPU nor listed among the official IEEE real types. To
completely overcome the problem, Delphi 4 modifies the definition of the Real type to represent a standard 8-byte (64-bit) floating-
point number.

In addition to the advantage of using a standard definition, this change allows components to publish properties based on the Real
type, something Delphi 3 did not allow. Among the disadvantages there might be compatibility problems. If necessary, you can
overcome the possibility of incompatibility by sticking to the Delphi 2 and 3 definition of the type; do this by using the following
compiler option:

{ SREALCOVPATI BI LI TY O\}

There are also two strange data types: Comp describes very big integers using 8 bytes (which can hold numbers with 18 decimal
digits); and Currency (not available in 16-bit Delphi) indicates a fixed-point decimal value with four decimal digits, and the same 64-
bit representation as the Comp type. As the name implies, the Currency data type has been added to handle very precise monetary
values, with four decimal places.

We cannot build a program similar to the Range example with real data types, because we cannot use the High and Low functions or
the Ord function on real-type variables. Real types represent (in theory) an infinite set of numbers; ordinal types represent a fixed set
of values.

Note: Let me explain this better. when you have the integer 23 you can determine which is the following value. Integers are finite
(they have a determined range and they have an order). Floating point numbers are infinite even within a small range, and have
no order: in fact, how many values are there between 23 and 24? And which number follows 23.46? It is 23.47, 23.461, or
23.4601? That's really hard to know!

For this reason, it makes sense to ask for the ordinal position of the character w in the range of the Char data type, but it makes no
sense at all to ask the same question about 7143.1562 in the range of a floating-point data type. Although you can indeed know
whether one real number has a higher value than another, it makes no sense to ask how many real numbers exist before a given
number (this is the meaning of the Ord function).

Essential Pascal

Real types have a limited role in the user interface portion of the code (the Windows side), but they are fully supported by Delphi,
including the database side. The support of IEEE standard floating-point types makes the Object Pascal language completely
appropriate for the wide range of programs that require numerical computations. If you are interested in this aspect, you can look at
the arithmetic functions provided by Delphi in the system unit (see the Delphi Help for more details).

Note: Delphi also has a Math unit that defines advanced mathematical routines, covering trigonometric functions (such as the
ArcCosh function), finance (such as the InterestPayment function), and statistics (such as the MeanAndStdDev procedure). There
are a number of these routines, some of which sound quite strange to me, such as the MomentSkewKurtosis procedure (I'll let you
find out what this is).

Date and Time

Delphi uses real types also to handle date and time information. To be more precise Delphi defines a specific TDateTime data type.
This is a floating-point type, because the type must be wide enough to store years, months, days, hours, minutes, and seconds, down
to millisecond resolution in a single variable. Dates are stored as the number of days since 1899-12-30 (with negative values
indicating dates before 1899) in the integer part of the TDateTime value. Times are stored as fractions of a day in the decimal part of
the value.

TDateTime is not a predefined type the compiler understands, but it is defined in the system unit as:

type
TDat eTi me = type Doubl e;

Using the TDateTime type is quite easy, because Delphi includes a number of functions that operate on this type. You can find a list
of these functions in Table 3.3.

Table 3.3: System Routines for the TDateTime Type

Routine ‘ Description

Now Returns the current date and time into a single TDateTime value.
Date Returns only the current date.
Time Returns only the current time.

Converts a date and time value into a string, using default formatting; to have more control on the conversion

DateTimeToStr use the FormatDateTime function instead.

DateTimeToString | Copies the date and time values into a string buffer, with default formatting.

DateToStr Converts the date portion of a TDateTime value into a string.

TimeToStr Converts the time portion of a TDateTime value into a string.

Formats a date and time using the specified format; you can specify which values you want to see and which

FormatDateTime - X
format to use, providing a complex format string.

Converts a string with date and time information to a TDateTime value, raising an exception in case of an error

StrioDateTime in the format of the string.
StrToDate Converts a string with a date value into the TDateTime format.
StrToTime Converts a string with a time value into the TDateTime format.

DayOfWeek Returns the number corresponding to the day of the week of the TDateTime value passed as parameter.

Essential Pascal

DecodeDate Retrieves the year, month, and day values from a date value.

DecodeTime Retrieves out of a time value.

EncodeDate Turns year, month, and day values into a TDateTime value.

EncodeTime Turns hour, minute, second, and millisecond values into a TDateTime value.

To show you how to use this data type and some of its related routines, I've built a simple example, named TimeNow. The main form
of this example has a Button and a ListBox component. When the program starts it automatically computes and displays the current
time and date. Every time the button is pressed, the program shows the time elapsed since the program started.

Here is the code related to the OnCreate event of the form:

procedur e TFor nli neNow. For nCr eat e(Sender: TObj ect) ;
begin

Start Tinme : = Now,

Li st Box1. ltens. Add (Ti neToStr (StartTine));

Li st Box1.ltens. Add (DateToStr (StartTine));

Li st Box1.ltems. Add (' Press button for el apsed tine');
end;

Launch Example

The first statement is a call to the Now function, which returns the current date and time. This value is stored in the StartTime
variable, declared as a global variable as follows:

var
For nili neNow. TFor mili neNow,
StartTi ne: TDateTi ne;

I've added only the second declaration, since the first is provided by Delphi. By default, it is the following:

var
Forml: TFor ni;

Changing the name of the form, this declaration is automatically updated. Using global variables is actually not the best approach: It
should be better to use a private field of the form class, a topic related to object-oriented programming and discussed in Mastering
Delphi 4.

The next three statements add three items to the ListBox component on the left of the form, with the result you can see in Figure
3.3. The first line contains the time portion of the TDateTime value converted into a string, the second the date portion of the same
value. At the end the code adds a simple reminder.

FIGURE 3.3: The output of the TimeNow example at startup.

Essential Pascal

J¥ Time How _ [Of x|

3:08:41 PM
e 1 [3/15/99
. Elapsed | |Press button for elapsed time

This third string is replaced by the program when the user clicks on the Elapsed button:

procedur e TFor nili meNow. But t onEl apsedd i ck(Sender: TObj ect);

var
St opTi me: TDat eTi ne;
begi n
St opTi me : = Now;
Li stBox1.1tenms [2] := FornmatDateTinme ('hh:nn:ss',
StopTinme - StartTine);
end;

This code retrieves the new time and computes the difference from the time value stored when the program started. Because we
need to use a value that we computed in a different event handler, we had to store it in a global variable. There are actually better
alternatives, based on classes.

Note: The code that replaces the current value of the third string uses the index 2. The reason is that the items of a list box are
zero-based: the first item is number 0, the second number 1, and the third number 2. More on this as we cover arrays.

Besides calling TimeToStr and DateToStr you can use the more powerful FormatDateTime function, as I've done in the last method
above (see the Delphi Help file for details on the formatting parameters). Notice also that time and date values are transformed into
strings depending on Windows international settings. Delphi reads these values from the system, and copies them to a number of
global constants declared in the SysUtils unit. Some of them are:

Dat eSepar at or: Char;

Short Dat eFormat: string;

LongDat eFormat: string;

Ti mreSepar at or: Char;

Ti meAMSt ring: string;

Ti mePMString: string;

Short Ti neFormat: string;

LongTi meFormat: string;

Short Mont hNames: array [1..12] of string;
LongMont hNanes: array [1..12] of string;
Short DayNanes: array [1..7] of string;
LongDayNanes: array [1..7] of string;

More global constants relate to currency and floating-point number formatting. You can find the complete list in the Delphi Help file
under the topic Currency and date/time formatting variables.

Note: Delphi includes a DateTimePicker component, which provides a sophisticated way to input a date, selecting it from a

Essential Pascal

| calendar.

Specific Windows Types

The predefined data types we have seen so far are part of the Pascal language. Delphi also includes other data types defined by
Windows. These data types are not an integral part of the language, but they are part of the Windows libraries. Windows types
include new default types (such as DWORD or UINT), many records (or structures), several pointer types, and so on.

Among Windows data types, the most important type is represented by handles, discussed in Chapter 9.

Typecasting and Type Conversions

As we have seen, you cannot assign a variable to another one of a different type. In case you need to do this, there are two choices.
The first choice is typecasting, which uses a simple functional notation, with the name of the destination data type:

var
N I nteger;
C. Char;
B: Bool ean;

begi n
N:= Integer ('X);
C .= Char (N);
B : = Boolean (0);

You can typecast between data types having the same size. It is usually safe to typecast between ordinal types, or between real
types, but you can also typecast between pointer types (and also objects) as long as you know what you are doing.

Casting, however, is generally a dangerous programming practice, because it allows you to access a value as if it represented
something else. Since the internal representations of data types generally do not match, you risk hard-to-track errors. For this reason,
you should generally avoid typecasting.

The second choice is to use a type-conversion routine. The routines for the various types of conversions are summarized in Table 3.4.
Some of these routines work on the data types that we'll discuss in the following sections. Notice that the table doesn't include
routines for special types (such as TDateTime or variant) or routines specifically intended for formatting, like the powerful Format and
FormatFloat routines.

Table 3.4: System Routines for Type Conversion

Routine Description

Chr Converts an ordinal number into an ANSI character.

Ord Converts an ordinal-type value into the number indicating its order.
Round Converts a real-type value into an Integer-type value, rounding its value.
Trunc Converts a real-type value into an Integer-type value, truncating its value.
Int Returns the Integer part of the floating-point value argument.

IntToStr Converts a number into a string.

IntToHex Converts a number into a string with its hexadecimal representation.

Essential Pascal

StrTolnt

Converts a string into a number, raising an exception if the string does not represent a valid integer.

StrTolntDef

Converts a string into a number, using a default value if the string is not correct.

Val Converts a string into a number (traditional Turbo Pascal routine, available for compatibility).

Str Converts a number into a string, using formatting parameters (traditional Turbo Pascal routine, available for
compatibility).

StrPas Converts a null-terminated string into a Pascal-style string. This conversion is automatically done for AnsiStrings in
32-bit Delphi. (See the section on strings later in this chapter.)

StrPCo Copies a Pascal-style string into a null-terminated string. This conversion is done with a simple PChar cast in 32-

Py bit Delphi. (See the section on strings later in this chapter.)
StrPLCopy Copies a portion of a Pascal-style string into a null-terminated string.

FloatToDecimal

Converts a floating-point value to record including its decimal representation (exponent, digits, sign).

FloatToStr Converts the floating-point value to its string representation using default formatting.

FloatToStrF Converts the floating-point value to its string representation using the specified formatting.

FloatToText Copies the floating-point value to a string buffer, using the specified formatting.

FloatToTextFmt | As the previous routine, copies the floating-point value to a string buffer, using the specified formatting.
StrToFloat Converts the given Pascal string to a floating-point value.

TextToFloat Converts the given null-terminated string to a floating-point value.

"E*Note: In recent versions of Delphi's Pascal compiler, the Round function is based on the FPU processor of the CPU. This

processor adopts the so-called "Banker's Rounding", which rounds middle values (as 5.5 or 6.5) up and down depending whether
they follow an odd or an even number.

Conclusion

In this chapter we've explored the basic notion of type in Pascal. But the language has another very important feature: It allows
programmers to define new custom data types, called user-defined data types. This is the topic of the next chapter.

Next Chapter: User-Defined Data Types

© Copyright Marco Cantu, Wintech Italia Srl 1995-2000

Essential Pascal

. Www.marcocantu.com

HAR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

Wi marcocantu com

Chapter 4
Marco Cantu's User-Defined Data
Essential Pascal Types

Along with the notion of type, one of the great ideas introduced by the Pascal language is the ability to define new data types in a

program. Programmers can define their own data types by means of type constructors, such as subrange types, array types, record
types, enumerated types, pointer types, and set types. The most important user-defined data type is the class, which is part of the
object-oriented extensions of Object Pascal, not covered in this book.

If you think that type constructors are common in many programming languages, you are right, but Pascal was the first language to
introduce the idea in a formal and very precise way. There are still few languages with so many mechanisms to define new types.

Named and Unnamed Types

These types can be given a name for later use or applied to a variable directly. When you give a name to a type, you must provide a
specific section in the code, such as the following:

type
/1 subrange definition
Uppercase = 'A'".."'Z",;

[l array definition
Tenperatures = array [1..24] of I|nteger;

// record definition
Date = record

Mont h: Byt e;

Day: Byte;

Year: |nteger,
end,

/1 enunerated type definition
Colors = (Red, Yellow, Geen, Cyan, Blue, Violet);

/'l set definition
Letters = set of Char;

Similar type-definition constructs can be used directly to define a variable without an explicit type name, as in the following code:

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

var
Decenber Tenperature: array [1..31] of Byte;
Col orCode: array [Red..Violet] of Wrd;
Pal ette: set of Colors;

Note: In general, you should avoid using unnamed types as in the code above, because you cannot pass them as parameters to
routines or declare other variables of the same type. The type compatibility rules of Pascal, in fact, are based on type names, not
on the actual definition of the types. Two variables of two identical types are still not compatible, unless their types have exactly
the same name, and unnamed types are given internal names by the compiler. Get used to defining a data type each time you
need a variable with a complicated structure, and you won't regret the time you've spent in it.

But what do these type definitions mean? I'll provide some descriptions for those who are not familiar with Pascal type constructs. Ill
also try to underline the differences from the same constructs in other programming languages, so you might be interested in reading
the following sections even if you are familiar with kind of type definitions exemplified above. Finally, I'll show some Delphi examples
and introduce some tools that will allow you to access type information dynamically.

Subrange Types

A subrange type defines a range of values within the range of another type (hence the name subrange). You can define a subrange
of the Integer type, from 1 to 10 or from 100 to 1000, or you can define a subrange of the Char type, as in:

type
Ten = 1..10;
Over Hundred = 100.. 1000;
Uppercase = "A'"..'Z",;

In the definition of a subrange, you don’t need to specify the name of the base type. You just need to supply two constants of that
type. The original type must be an ordinal type, and the resulting type will be another ordinal type.

When you have defined a subrange, you can legally assign it a value within that range. This code is valid:

var
UppLetter: UpperCase;
begin
UppLetter :="'F;

But this one is not:

var
UppLetter: UpperCase;

begin
UpplLetter := 'e'; /] conpile-tine error

Writing the code above results in a compile-time error, "Constant expression violates subrange bounds." If you write the following
code instead:

var
UpplLetter: Uppercase,
Letter: Char;

begi n
Letter :="e';

Essential Pascal

UppLetter := Letter;

Delphi will compile it. At run-time, if you have enabled the Range Checking compiler option (in the Compiler page of the Project
Options dialog box), you'll get a Range check error message.

Note: | suggest that you turn on this compiler option while you are developing a program, so it'll be more robust and easier to
debug, as in case of errors you'll get an explicit message and not an undetermined behavior. You can eventually disable the option
for the final build of the program, to make it a little faster. However, the difference is really small, and for this reason | suggest
you to leave all these run-time checks turned on, even in a shipping program. The same holds true for other run-time checking
options, such as overflow and stack checking.

Enumerated Types

Enumerated types constitute another user-defined ordinal type. Instead of indicating a range of an existing type, in an enumeration
you list all of the possible values for the type. In other words, an enumeration is a list of values. Here are some examples:

type
Colors = (Red, Yellow, Geen, Cyan, Blue, Violet);
Suit = (Cub, Dianond, Heart, Spade);

Each value in the list has an associated ordinality, starting with zero. When you apply the Ord function to a value of an enumerated
type, you get this zero-based value. For example, Ord (Diamond) returns 1.

Note: Enumerated types can have different internal representations. By default, Delphi uses an 8-bit representation, unless there
are more than 256 different values, in which case it uses the 16-bit representation. There is also a 32-bit representation, which
might be useful for compatibility with C or C++ libraries. You can actually change the default behavior, asking for a larger
representation, by using the $Z compiler directive.

The Delphi VCL (Visual Component Library) uses enumerated types in many places. For example, the style of the border of a form is
defined as follows:

type
TFornBor der Styl e = (bsNone, bsSingle, bsSizeable,
bsDi al og, bsSi zeTool Wn, bsTool W ndow) ;

When the value of a property is an enumeration, you usually can choose from the list of values displayed in the Object Inspector, as
shown in Figure 4.1.

Figure 4.1: An enumerated type property in the Object Inspector

Essential Pascal

Object Inspector x|

IFu:nrnﬂ: TFarm j

Properties | B |

BorderStyle bsSizeable v [=]
|

Caption bzDnalog

ClisntHeight | D3Mone

Curzor crDefault |

The Delphi Help file generally lists the possible values of an enumeration. As an alternative you can use the OrdType program,
available on www.marcocantu.com, to see the list of the values of each Delphi enumeration, set, subrange, and any other ordinal
type. You can see an example of the output of this program in Figure 4.2.

Figure 4.2: Detailed information about an enumerated type, as displayed by the OrdType program (available on my

web site).

J¥ Drdinal Types RTTI

TBrushStyle -I

THuftonLayout

THuttonSet |
THuftonState

TCanvasState

TCanvasStates

TCheckBoxState

Type Mame: TCloseAction
Type Kind: tkEnumeration
[mplement: ot Byte

Min Walue: 0

Max Value: 3

Base Type: TCloseAction

Launch Example

TClosebction Walues...
TColor 0. caklone
TColorDialogOption 1. caHide
TColorDialogOptions 2. cafFree
TColumnButtonStyle 3. caMinimize
Tolumnivalue hd

Set Types

Set types indicate a group of values, where the list of available values is indicated by the ordinal type the set is based onto. These
ordinal types are usually limited, and quite often represented by an enumeration or a subrange. If we take the subrange 1..3, the
possible values of the set based on it include only 1, only 2, only 3, both 1 and 2, both 1 and 3, both 2 and 3, all the three values, or
none of them.

A variable usually holds one of the possible values of the range of its type. A set-type variable, instead, can contain none, one, two,
three, or more values of the range. It can even include all of the values. Here is an example of a set:

type

Essential Pascal

Letters = set of Uppercase;

Now | can define a variable of this type and assign to it some values of the original type. To indicate some values in a set, you write
a comma-separated list, enclosed within square brackets. The following code shows the assignment to a variable of several values, a
single value, and an empty value:

var
Lettersl, Letters2, Letters3: Letters;
begin
Lettersl :=['A, 'B, 'C];
Letters2 := ['K];
Letters3 :=[];

In Delphi, a set is generally used to indicate nonexclusive flags. For example, the following two lines of code (which are part of the
Delphi library) declare an enumeration of possible icons for the border of a window and the corresponding set type:

type
TBorderlcon = (bi SystenMenu, bi M nim ze, bi Maxim ze, biHel p);
TBorderlcons = set of TBorderlcon;

In fact, a given window might have none of these icons, one of them, or more than one. When working with the Object Inspector
(see Figure 4.3), you can provide the values of a set by expanding the selection (double-click on the property name or click on the
plus sign on its left) and toggling on and off the presence of each value.

Figure 4.3: A set-type property in the Object Inspector

Object Inspector x|

IF:::rnﬂ: TFarm j

Froperties | Events |

AutoScroll True
- Barderlcons | [biSpetembd enu,bitdinimize, bikd aximize]
biSpstemtder True

L L]

Another property based on a set type is the style of a font. Possible values indicate a bold, italic, underline, and strikethrough font. Of
course the same font can be both italic and bold, have no attributes, or have them all. For this reason it is declared as a set. You can
assign values to this set in the code of a program as follows:

Font.Style :=[]; // no style
Font. Style := [fsBold]; // bold style only
Font. Style := [fsBold, fsltalic]; // two styles

You can also operate on a set in many different ways, including adding two variables of the same set type (or, to be more precise,
computing the union of the two set variables):

Font. Style := A dStyle + [fsUnderline]; // two sets

Essential Pascal

Again, you can use the OrdType examples included in the TOOLS directory of the book source code to see the list of possible values
of many sets defined by the Delphi component library.

Array Types

Array types define lists of a fixed number of elements of a specific type. You generally use an index within square brackets to access
to one of the elements of the array. The square brackets are used also to specify the possible values of the index when the array is
defined. For example, you can define a group of 24 integers with this code:

type
DayTenperatures = array [1..24] of Integer;

In the array definition, you need to pass a subrange type within square brackets, or define a new specific subrange type using two
constants of an ordinal type. This subrange specifies the valid indexes of the array. Since you specify both the upper and the lower
index of the array, the indexes don’t need to be zero-based, as is necessary in C, C++, Java, and other programming languages.

Since the array indexes are based on subranges, Delphi can check for their range as we've already seen. An invalid constant
subrange results in a compile-time error; and an out-of-range index used at run-time results in a run-time error if the corresponding
compiler option is enabled.

Using the array definition above, you can set the value of a DayTemp1 variable of the DayTemperatures type as follows:
type
DayTenperatures = array [1..24] of Integer;

var
DayTenpl: DayTenper at ures;

procedure AssignTenp;

begi n
DayTenmpl [1] := 54;
DayTempl [2] := 52;
DayTenmpl [24] 66;

DayTenpl [25] 67; /] conpile-tine error

An array can have more than one dimension, as in the following examples:

type
Mont hTenps = array [1..24, 1..31] of Integer;
Year Tenps = array [1..24, 1..31, Jan..Dec] of Integer;

These two array types are built on the same core types. So you can declare them using the preceding data types, as in the following
code:

type
Mont hTenps = array [1..31] of DayTenperatures;
Year Tenps = array [Jan..Dec] of MonthTenps;

This declaration inverts the order of the indexes as presented above, but it also allows assignment of whole blocks between variables.
For example, the following statement copies January’s temperatures to February:

Essential Pascal

var
Thi sYear: Year Tenps;

begin
Thi sYear [Feb] := ThisYear[Jan];

You can also define a zero-based array, an array type with the lower bound set to zero. Generally, the use of more logical bounds is
an advantage, since you don't need to use the index 2 to access the third item, and so on. Windows, however, uses invariably zero-
based arrays (because it is based on the C language), and the Delphi component library tends to do the same.

If you need to work on an array, you can always test its bounds by using the standard Low and High functions, which return the
lower and upper bounds. Using Low and High when operating on an array is highly recommended, especially in loops, since it makes
the code independent of the range of the array. Later, you can change the declared range of the array indices, and the code that
uses Low and High will still work. If you write a loop hard-coding the range of an array you'll have to update the code of the loop
when the array size changes. Low and High make your code easier to maintain and more reliable.

Note: Incidentally, there is no run-time overhead for using Low and High with arrays. They are resolved at compile-time into
constant expressions, not actual function calls. This compile-time resolution of expressions and function calls happens also for
many other simple system functions.

Delphi uses arrays mainly in the form of array properties. We have already seen an example of such a property in the TimeNow
example, to access the Items property of a ListBox component. I'll show you some more examples of array properties in the next
chapter, when discussing Delphi loops.

Note: Delphi 4 introduced dynamic arrays into Object Pascal , that is arrays that can be resized at runtime allocating the proper
amount of memory. Using dynamic arrays is easy, but in this discussion of Pascal | felt they were not an proper topic to cover. You
can find a description of Delphi's dynamic arrays in Chapter 8.

Record Types

Record types define fixed collections of items of different types. Each element, or field, has its own type. The definition of a record
type lists all these fields, giving each a name you'll use later to access it.

Here is a small listing with the definition of a record type, the declaration of a variable of that type, and few statements using this
variable:

type
Date = record
Year: |nteger,;

Mont h: Byte;
Day: Byte;
end;

var
Birt hDay: Date;

begi n
Birt hDay. Year := 1997;
Birt hDay. Month : = 2;
BirthDay. Day : = 14;

Classes and objects can be considered an extension of the record type. Delphi libraries tend to use class types instead of record

Essential Pascal

types, but there are many record types defined by the Windows API.

Record types can also have a variant part; that is, multiple fields can be mapped to the same memory area, even if they have a
different data type. (This corresponds to a union in the C language.) Alternatively, you can use these variant fields or groups of fields
to access the same memory location within a record, but considering those values from different perspectives. The main uses of this
type were to store similar but different data and to obtain an effect similar to that of typecasting (something less useful now that
typecasting has been introduced also in Pascal). The use of variant record types has been largely replaced by object-oriented and
other modern techniques, although Delphi uses them in some peculiar cases.

The use of a variant record type is not type-safe and is not a recommended programming practice, particularly for beginners. Expert
programmers can indeed use variant record types, and the core of the Delphi libraries makes use of them. You won’'t need to tackle
them until you are really a Delphi expert, anyway.

Pointers

A pointer type defines a variable that holds the memory address of another variable of a given data type (or an undefined type). So a
pointer variable indirectly refers to a value. The definition of a pointer type is not based on a specific keyword, but uses a special
character instead. This special symbol is the caret (™):

type
Poi nter Tol nt = ~l nteger;

Once you have defined a pointer variable, you can assign to it the address of another variable of the same type, using the @
operator:

var
P: “lInteger,
X: I nteger,;
begin
P:i= @
/1 change the value in two different ways
X 1= 10;
Pr = 20;

When you have a pointer P, with the expression P you refer to the address of the memory location the pointer is referring to, and
with the expression P/ you refer to the actual content of that memory location. For this reason in the code fragment above P
corresponds to X.

Instead of referring to an existing memory location, a pointer can refer to a new memory block dynamically allocated (on the heap
memory area) with the New procedure. In this case, when you don't need the pointer any more, you'll also have to to get rid of the
memory you've dynamically allocated, by calling the Dispose procedure.

var
P: ™l nteger;
begin
/'l initialization
New (P);
/1 operations
P~ = 20;

ShowMessage (I ntToStr (P*));
/] termnation
Di spose (P);

end,

Essential Pascal

If a pointer has no value, you can assign the nil value to it. Then you can test whether a pointer is nil to see if it currently refers to a
value. This is often used, because dereferencing an invalid pointer causes an access violation (also known as a general protection
fault, GPF):

procedure TFor nGPF. Bt nGpf O i ck(Sender: TObj ect);

var

P: “lnteger,
begin

P:=nil;

ShowMessage (I ntToStr (P*));
end;

Y ou can see an example of the effect of this code by running the GPF example (or looking at the
corresponding Figure 4.4). The example contains also the code fragments shown above.

Figure 4.4: The system error resulting from the access to a nil pointer, from the GPF example. ' Launch Example

GPE - [O] %]

GFF |
Gpf B |

Q Accesz wiolation at address 00433FF5 in module 'GPF.EXE'. Read of address FFFFFFFF.

In the same program you can find an example of safe data access. In this second case the pointer is assigned to an existing local
variable, and can be safely used, but I've added a safe-check anyway:

procedure TFor nGPF. Bt nSaf eCl i ck(Sender: TObj ect);

var
P: “lnteger,
X: I nteger,;
begin
P:= @
X 1= 100;

if P<>nil then
ShowMessage (IntToStr (PY));
end;

Delphi also defines a Pointer data type, which indicates untyped pointers (such as void* in the C language). If you use an untyped
pointer you should use GetMem instead of New. The GetMem procedure is required each time the size of the memory variable to
allocate is not defined.

Essential Pascal

The fact that pointers are seldom necessary in Delphi is an interesting advantage of this environment. Nonetheless, understanding
pointers is important for advanced programming and for a full understanding of the Delphi object model, which uses pointers "behind
the scenes.”

Note: Although you don’t use pointers often in Delphi, you do frequently use a very similar construct—namely, references. Every
object instance is really an implicit pointer or reference to its actual data. However, this is completely transparent to the
programmer, who uses object variables just like any other data type.

File Types

Another Pascal-specific type constructor is the file type. File types represent physical disk files, certainly a peculiarity of the Pascal
language. You can define a new file data type as follows:

type
IntFile = file of Integer;

Then you can open a physical file associated with this structure and write integer values to it or read the current values from the file.

Author's Note: Files-based examples were part of older editions of Mastering Delphi and | plan adding them here as well)

The use of files in Pascal is quite straightforward, but in Delphi there are also some components that are capable of storing or loading
their contents to or from a file. There is some serialization support, in the form of streams, and there is also database support.

Conclusion

This chapter discussing user-defined data types complete our coverage of Pascal type system. Now we are ready to look into the
statements the language provides to operate on the variables we've defined.

Next Chapter: Statements

© Copyright Marco Cantu, Wintech Italia Srl 1995-2000

Essential Pascal

. Www.marcocantu.com

M ﬁR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

Wi MMarCocaniu. com
Marco Cantu's Chapter 5
Essential Pascal Statements

If the data types are one of the foundations of Pascal programming the other are statements. Statements of the programming
language are based on keywords and other elements which allow you to indicate to a program a sequence of operations to perform.
Statements are often enclosed in procedures or functions, as we'll see in the next chapter. Now we'll just focus on the basic types of
commands you can use to create a program.

Simple and Compound Statements

A Pascal statement is simple when it doesn't contain any other statements. Examples of simple statements are assignment
statements and procedure calls. Simple statements are separated by a semicolon:

X:=Y+ Z |l assignnent
Random ze; /1 procedure call

Usually, statements are part of a compound statement, marked by begin and end brackets. A compound
statement can appear in place of a generic Pascal statement. Here is an example:

begin

A B;
C:= A* 2
d.

The semicolon after the last statement before the end isn't required, asin the following:

begin
A = B;
C:=A* 2
end;

Both versions are correct. Thefirst version has a useless (but harmless) semicolon. This semicolonis, in
fact, anull statement; that is, a statement with no code. Notice that, at times, null statements can be used
inside loops or in other particular cases.

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

Note: Although these final semicolons serve no purpose, | tend to use them and suggest you do the same. Sometimes after you've
written a couple of lines you might want to add one more statement. If the last semicolon is missing you should remember to add
it, so it might be better to add it in the first place.

Assignment Statements

Assignments in Pascal use the colon-equal operator, an odd notation for programmers who are used to other languages. The =
operator, which is used for assignments in some other languages, in Pascal is used to test for equality.

Note: By using different symbols for an assignment and an equality test, the Pascal compiler (like the C compiler) can translate
source code faster, because it doesn't need to examine the context in which the operator is used to determine its meaning. The
use of different operators also makes the code easier for people to read.

Conditional Statements

A conditional statement is used to execute either one of the statements it contains or none of them, depending on some test. There
are two basic flavors of conditional statements: if statements and case statements.

If Statements

The if statement can be used to execute a statement only if a certain condition is met (if-then), or to choose between two different
alternatives (if-then-else). The condition is described with a Boolean expression. A simple Delphi example will demonstrate how to
write conditional statements. First create a new application, and put two check boxes and four buttons in the form. Do not change
the names of buttons or check boxes, but double-click on each button to add a handler for its OnClick event. Here is a simple if
statement for the first button:

procedure TForml. Buttonld i ck(Sender: Thject);
begin
/[l sinple if statenent
i f CheckBox1. Checked then
ShowMessage (' CheckBoxl1l is checked')
end;

When you click on the button, if the first check box has a check mark in it, the program will show a simple message (see Figure 5.1).
I've used the ShowMessage function because it is the simplest Delphi function you can use to display a short message to the user.

Figure 5.1: The message displayed by the IfTest example when you press the first button and the first check box is
checked.

Essential Pascal

w0 IF Test - O] =|

Button
[¥ CheckBoxl

Button

: Launch Example

[T CheckBoxz :

Button3

If_test |
Buttond

CheckBoxl 1= checked

If you click the button and nothing happens, it means the check box was not checked. In a case like this, it would probably be better
to make this more explicit, as with the code for the second button, which uses an if-then-else statement:

procedure TForml. Button2d i ck(Sender: Thject);
begi n
/1 if-then-el se statenent
i f CheckBox2. Checked then
ShowMessage (' CheckBox2 is checked')
el se
ShowMessage (' CheckBox2 is NOT checked');
end,

Notice that you cannot have a semicolon after the first statement and before the else keyword, or the compiler will issue a syntax
error. The if-then-else statement, in fact, is a single statement, so you cannot place a semicolon in the middle of it.

An if statement can be quite complex. The condition can be turned into a series of conditions (using the and, or and not Boolean
operators), or the if statement can nest a second if statement. The last two buttons of the IfTest example demonstrate these cases:

procedure TForml. Button3d i ck(Sender: Thject);
begin
/1 statenent with a double condition
i f CheckBox1. Checked and CheckBox2. Checked then
ShowMvessage (' Both check boxes are checked')
end;

procedure TForml. Button4d i ck(Sender: Thject);
begin
/1 conmpound if statenent
i f CheckBox1. Checked then
i f CheckBox2. Checked then
Showiessage (' CheckBox1l and 2 are checked')

Essential Pascal

el se

Showvessage (' Only CheckBoxl i s checked')

el se

ShowMessage (
' Checkbox1 is not checked, who cares for Checkbox2?')

end;

Look at the code carefully and run the program to see if you understand everything. When you have doubts about a programming
construct, writing a very simple program such as this can help you learn a lot. You can add more check boxes and increase the
complexity of this small example, making any test you like.

Case Statements

If your if statements become very complex, at times you can replace them with case statements. A case statement consists in an
expression used to select a value, a list of possible values, or a range of values. These values are constants, and they must be unique
and of an ordinal type. Eventually, there can be an else statement that is executed if none of the labels correspond to the value of

the selector. Here are two simple examples:

case Nunber of
1. Text := 'One';
2. Text :="'Two';
3. Text := 'Three';
end;
case MyChar of
b+ Text := '"Plus sign';
'-' : Text := 'Mnus sign';
"xr [t Text = "Miltiplication or division';
"0'.."9": Text := 'Nunber';
'a'.."'z': Text := 'Lowercase character';
"A.."Z: Text := 'Uppercase character';
el se
Text := 'Unknown character';
end;

Loops in Pascal

The Pascal language has the typical repetitive statements of most programming languages, including for, while, and repeat
statements. Most of what these loops do will be familiar if you've used other programming languages, so I'll cover them only briefly.

The For Loop

The for loop in Pascal is strictly based on a counter, which can be either increased or decreased each time the loop is executed. Here
is a simple example of a for loop used to add the first ten numbers.

var
K, I: Integer;

begin

K:=0;

for I :=1to
K:= K+ |

’

This same for statement could have been written using a reverse counter:

10 do

Essential Pascal

var
K, |: Integer;
begin
K:=0;
for | 10 downto 1 do

K:= K+ 1;

The for loop in Pascal is less flexible than in other languages (it is not possible to specify an increment different than one), but it is
simple and easy to understand. If you want to test for a more complex condition, or to provide a customized counter, you need to
use a while or repeat statement, instead of a for loop.

Note: The counter of a for loop doesn't need to be a number. It can be a value of any ordinal type, such as a character or an
enumerated type.

While and Repeat Statements

The difference between the while-do loop and the repeat-until loop is that the code of the repeat statement is always executed at
least once. You can easily understand why by looking at a simple example:

while (I <= 100) and (J <= 100) do

begi n
/1 use | and J to conpute something...
I =1 + 1;
J:=J + 1,

end;

r epeat
/1 use | and J to conpute sonething...
I =1 + 1,
J:=3J + 1,

until (I > 100) or (J > 100);

If the initial value of I or J is greater than 100, the statements inside the repeat-until loop are executed once anyway.

The other key difference between these two loops is that the repeat-until loop has a reversed condition. The loop is executed as
long as the condition is not met. When the condition is met, the loop terminates. This is the opposite from a while-do loop, which
is executed while the condition is true. For this reason | had to reverse the condition in the code above to obtain a similar
statement.

An Example of Loops

To explore the details of loops, let's look at a small Delphi example. The Loops program highlights the difference between a loop with
a fixed counter and a loop with an almost random counter. Start with a new blank project, place a list box and two buttons on the
main form, and give the buttons a proper name (BtnFor and BtnWhile) by setting their Name property in the Object Inspector. You
can also remove the word Btn from the Caption property (and eventually even add the & character to it to activate the following
letter as a shortcut key). Here is a summary of the textual description of this form:

obj ect Forml: TForml
Caption = 'Loops'
obj ect ListBoxl: TListBox ...
obj ect BtnFor: TButton

Essential Pascal

Caption = ' &For'
Ondick = BtnFordick
end

obj ect BtnWile: TButton
Caption = '&nile'
Ondick = Btnwiledick
end
end

Figure 5.2: Each time you press the For button of the Loops example, the list box is filled with consecutive numbers.

i Loops M= S

Strifig 1
String £
String 3
String 4
Sting B
String B
String ¥
String &
Sting 9
Stririg 10
String 11
String 12
Stririg 13
String 14
String 15
String 16 —_
Sting 17

Strinig 18 |

| v

Launch Example

Now we can add some code to the OnClick events of the two buttons. The first button has a simple for loop to display a list of
numbers, as you can see in Figure 5.2. Before executing this loop, which adds a number of strings to the Items property of the list
box, you need to clear the contents of the list box itself:

procedure TForml. Bt nFord i ck(Sender: TObject);
var

I: Integer;
begi n

Li st Box1. ltens. C ear;

for I :=1to 20 do

Li stbox1l.ltems. Add ('String ' + IntToStr (1));

end,

The code associated with the second button is slightly more complex. In this case, there is a while loop based on a counter, which is
increased randomly. To accomplish this, I've called the Randomize procedure, which resets the random number generator, and the
Random function with a range value of 100. The result of this function is a number between 0 and 99, chosen randomly. The series
of random numbers control how many times the while loop is executed.

procedure TForml. Bt nWi | ed i ck(Sender: TObject);
var

Essential Pascal

I: Integer;
begin
Li st Box1l. | tens. d ear;
Randomi ze;
| :=0;
while | < 1000 do
begin
I :=1 + Random (100);
Li stbox1. ltens. Add (' Random Nunber: ' + IntToStr (1));
end;
end;

Each time you click the While button, the numbers are different, because they depend on the random-number generator. Figure 5.3
shows the results from two separate button-clicks. Notice that not only are the generated numbers different each time, but so is the
number of items. That is, this while loop is executed a random numbers of times. If you press the While button several times in a
row, you'll see that the list box has a different number of lines.

Figure 5.3: The contents of the list box of the Loops example change each time you press the While button. Because
the loop counter is incremented by a random value, every time you press the button the loop may execute a different
number of times.

- Loops =1

Randam MNumber; 90 =
R andom Mumber; 183 —
Randaom Humber; 221
R andom Mumber; 222
Randarn Mumber: 234 wihile
R andom Mumber; 292 —
R andom Mumber; 310
R andom Mumber; 360

Random Murber: 373 a1 Loops
R andom Humber; 431
Handom Murmber: 448 :
Random Mumber; 73
R andom Murmber: 457 Fandon Mumber: 151
R andom Mumber: 460 Fandom Mumber: 198
Fandom Mumber; 472 Fandam Murmber: 229
Fiandom Nurnber: 538 Fandom Mumber; 323
Fiandom Numl:uerf bz3 Random Mumber: 333
Fiandom Numl:uer: Bo5% R andom Mumber: 412
E‘a”':!':'m !‘*-!um!:uer. ﬁ@? R andom Mumber: 506

R andom Number; GO0
R andom Mumber: 676
Random Number; 745
Random Humber: 544
R andom Mumber; 315
R andom Mumber; 967
R andom Mumber; 1066

Essential Pascal

Note: You can alter the standard flow of a loop's execution using the Break and Continue system procedures. The first interrupts
the loop; the second is used to jump directly to the loop test or counter increment, continuing with the next iteration of the loop
(unless the condition is zero or the counter has reached its highest value). Two more system procedures, Exit and Halt, let you
immediately return from the current function or procedure or terminate the program.

The With Statement

The last kind of Pascal statement I'll focus on is the with statement, which used to be peculiar to this programming language
(although it has been recentrly introduced also in JavaScript and Visual Basic) and can be very useful in Delphi programming.

The with statement is nothing but shorthand. When you need to refer to a record type variable (or an object), instead of repeating its
name every time, you can use a with statement. For example, while presenting the record type, | wrote this code:

type
Date = record
Year: |nteger,;

Mont h: Byte;
Day: Byte;
end;

var
Birt hDay: Date;

begi n
Birt hDay. Year := 1997;
Birt hDay. Month : = 2;
BirthDay. Day : = 14;

Using a with statement, | can improve the final part of this code, as follows:

begin
with BirthbDay do
begin
Year := 1995;
Month = 2;
Day := 14;
end;

This approach can be used in Delphi programs to refer to components and other class types. For example, we can rewrite the final
part of the last example, Loops, using a with statement to access the items of the list box:

procedure TForml. Whi | eButtond i ck(Sender: TObject);
var
I: Integer;
begin
with ListBoxl.ltens do
begin
Clear; // shortcut
Random ze;
I .= 0;
while | < 1000 do
begin
I := 1 + Random (100);
/'l shortcut:

Essential Pascal

Add (' Random Nunber: ' + IntToStr (I1));
end;
end;
end;

When you work with components or classes in general, the with statement allows you to skip writing some code, particularly for
nested fields. For example, suppose that you need to change the Width and the Color of the drawing pen for a form. You can write
the following code:

For mL. Canvas. Pen. Wdth :
For mL. Canvas. Pen. Col or

2;
cl Red;

But it is certainly easier to write this code:

wi th Forml. Canvas. Pen do

begin

Wdth := 2;

Col or := cl Red;
end;

When you are writing complex code, the with statement can be effective and spares you the declaration of some temporary
variables, but it has a drawback. It can make the code less readable, particularly when you are working with different objects that
have similar or corresponding properties.

A further drawback is that using the with statement can allow subtle logical errors in the code that the compiler will not detect. For
example:

with Buttonl do

begin
Wdth := 200;
Caption :="'New Caption';
Col or := cl Red;

end;

This code changes the Caption and the Width of the button, but it affects the Color property of the form, not that of the button! The
reason is that the TButton components don't have the Color property, and since the code is executed for a form object (we are
writing a method of the form) this object is accessed by default. If we had instead written:

Buttonl. Wdth : = 200;
Buttonl. Caption :="'New Caption';
Buttonl. Color := clRed; // error!

the compiler would have issued an error. In general, we can say that since the with statement introduces new identifiers in the
current scope, we might hide existing identifiers, or wrongfully access another identifier in the same scope (as in the first version of
this code fragment). Even considering this kind of drawback, | suggest you get used to with statements, because they can be really
very handy, and at times even make the code more readable.

You should, however, avoid using multiple with statements, such as:

wi th ListBoxl, Buttonl do...

The code following this would probably be highly unreadable, because for each property defined in this block you would need to think
about which component it refers to, depending on the respective properties and the order of the components in the with statement.

Essential Pascal

Note: Speaking of readability, Pascal has no endif or endcase statement. If an if statement has a begin-end block, then the end of
the block marks the end of the statement. The case statement, instead, is always terminated by an end. All these end statements,
often found one after the other, can make the code difficult to follow. Only by tracing the indentations can you see which
statement a particular end refers to. A common way to solve this problem and make the code more readable is to add a comment
after the end statement indicating its role, as in:

if ... then
end: /1 if
Conclusion

This chapter has described how to code conditional statements and loops. Instead of writing long lists of such statements, programs
are usually split in routines, procedures or functions. This is the topic of the next chapter, which introduces also some advanced

elements of Pascal.

Next Chapter: Procedures

© Copyright Marco Cantu, Wintech ltalia Srl 1995-2000

Essential Pascal

. Www.marcocantu.com

AR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

www, marcocantu.com

Marco Cantu’s Chapter 6
Essential Pascal Procedures and Functions

Another important idea emphasized by Pascal is the concept of the routine, basically a series of statements with a unique name, which can be
activated many times by using their name. This way you avoid repeating the same statements over and over, and having a single version of the
code you can easily modify it all over the program. From this point of view, you can think of routines as the basic code encapsulation mechanism.
I'll get back to this topic with an example after I introduce the Pascal routines syntax.

Pascal Procedures and Functions

In Pascal, a routine can assume two forms: a procedure and a function. In theory, a procedure is an operation you ask the computer to perform, a
function is a computation returning a value. This difference is emphasized by the fact that a function has a result, a return value, while a
procedure doesn't. Both types of routines can have multiple parameters, of given data types.

In practice, however, the difference between functions and procedures is very limited: you can call a function to perform some work and then skip
the result (which might be an optional error code or something like that) or you can call a procedure which passes a result within its parameters
(more on reference parameters later in this chapter).

Here are the definitions of a procedure and two versions of the same function, using a slightly different syntax:

procedure Hell o;
begi n

Showvessage ('Hello world!");
end;

function Double (Value: Integer) : I|nteger;
begi n

Doubl e := Value * 2;
end;

/]l or, as an alternative

function Doubl e2 (Value: Integer) : Integer;
begi n

Result := Value * 2;
end;

The use of Result instead of the function name to assign the return value of a function is becoming quite popular, and tends to make the code
more readable, in my opinion.

Once these routines have been defined, you can call them one or more times. You call the procedure to make it perform its task, and call a
function to compute the value:

procedure TForml. Buttonldick (Sender: TObject);
begi n

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

Hel | o;
end;

procedure TForml. Button2dick (Sender: TOnject);
var
X, Y: Integer;
begi n
X := Double (StrTolnt (Editl.Text));
Y := Double (X);
Showessage (I ntToStr (Y));
end;

Note: For the moment don't care about the syntax of the two procedures above, which are actually methods. Simply place two buttons on a
Delphi form, click on them at design time, and the Delphi IDE will generate the proper support code: Now you simply have to fill in the lines
between begin and end. To compile the code above you need to add also an Edit control to the form.

Now we can get back to the encapsulation code concept I've introduced before. When you call the Double function, you don't need to know the
algorithm used to implement it. If you later find out a better way to double numbers, you can easily change the code of the function, but the
calling code will remain unchanged (although executing it will be faster!). The same principle can be applied to the Hello procedure: We can
modify the program output by changing the code of this procedure, and the Button2Click method will automatically change its effect. Here is how
we can change the code:

procedure Hell o;
begi n

MessageDlg ('Hello world!', miInformation, [nbOK]);
end;

Tip: When you call an existing Delphi function or procedure, or any VCL method, you should remember the number and type of the
parameters. Delphi editor helps you by suggesting the parameters list of a function or procedure with a fly-by hint as soon as you type its name
and the open parenthesis. This feature is called Code Parameters and is part of the Code Insight technology.

Reference Parameters

Pascal routines allow parameter passing by value and by reference. Passing parameters by value is the default: the value is copied on the stack
and the routine uses and manipulates the copy, not the original value.

Passing a parameter by reference means that its value is not copied onto the stack in the formal parameter of the routine (avoiding a copy often
means that the program executes faster). Instead, the program refers to the original value, also in the code of the routine. This allows the
procedure or function to change the value of the parameter. Parameter passing by reference is expressed by the var keyword.

This technique is available in most programming languages. It isn't present in C, but has been introduced in C++, where you use the & (pass
by reference) symbol. In Visual Basic every parameter not specified as ByVal is passed by reference.

Here is an example of passing a parameter by reference using the var keyword:

procedure Doubl eTheVal ue (var Val ue: Integer);
begi n

Val ue := Value * 2;
end;

In this case, the parameter is used both to pass a value to the procedure and to return a new value to the calling code. When you write:

var
X: Integer;
begi n
X = 10;

Essential Pascal

Doubl eTheVval ue (X);

the value of the X variable becomes 20, because the function uses a reference to the original memory location of X, affecting its initial value.

Passing parameters by reference makes sense for ordinal types, for old-fashioned strings, and for large records. Delphi objects, in fact, are
invariably passed by value, because they are references themselves. For this reason passing an object by reference makes little sense (apart from
very special cases), because it corresponds to passing a "reference to a reference.”

Delphi long strings have a slightly different behavior: they behave as references, but if you change one of the string variables referring to the
same string in memory, this is copied before updating it. A long string passed as a value parameter behaves as a reference only in terms of
memory usage and speed of the operation. But if you modify the value of the string, the original value is not affected. On the contrary, if you pass
the long string by reference, you can alter the original value.

Delphi 3 introduced a new kind of parameter, out. An out parameter has no initial value and is used only to return a value. These parameters
should be used only for COM procedures and functions; in general, it is better to stick with the more efficient var parameters. Except for not
having an initial value, out parameters behave like var parameters.

Constant Parameters

As an alternative to reference parameters, you can use a const parameter. Since you cannot assign a new value to a constant parameter inside
the routine, the compiler can optimize parameter passing. The compiler can choose an approach similar to reference parameters (or a const
reference in C++ terms), but the behavior will remain similar to value parameters, because the original value won't be affected by the routine.

In fact, if you try to compile the following (silly) code, Delphi will issue an error:

function Doubl eTheVal ue (const Val ue: Integer): |nteger;

begin
Val ue := Value * 2; /'l conpiler error
Result := Val ue;

end;

Open Array Parameters

Unlike C, a Pascal function or procedure always has a fixed number of parameters. However, there is a way to pass a varying number of
parameters to a routine using an open array.

The basic definition of an open array parameter is that of a typed open array. This means you indicate the type of the parameter but do not know
how many elements of that type the array is going to have. Here is an example of such a definition:

function Sum (const A: array of Integer): Integer;

var
I: Integer;
begi n
Result := 0;
for I := LowmA) to H gh(A) do
Result := Result + All];
end;

Using High(A) we can get the size of the array. Notice also the use of the return value of the function, Result, to store temporary values. You can
call this function by passing to it an array of Integer expressions:

X = Sum ([10, Y, 27*1]);

Given an array of Integers, of any size, you can pass it directly to a routine requiring an open array parameter or, instead, you can call the Slice
function to pass only a portion of the array (as indicated by its second parameter). Here is an example, where the complete array is passed as

Essential Pascal

parameter:
var
List: array [1..10] of Integer;
X, |: Integer;
begi n
[/ initialize the array
for I := Low (List) to High (List) do
List [I] :=1 * 2;
/1 call

X := Sum (List);
If you want to pass only a portion of the array to the Slice function, simply call it this way:
X := Sum (Slice (List, 5));

Y ou can find al the code fragments presented in this section in the OpenArr example (see Figure 6.1, later on, for
the form).

Figure 6.1: The OpenArr example when the Partial Slice button is pressed

Openarr

Launch Example

=

Typed open arrays in Delphi 4 are fully compatible with dynamic arrays (introduced in Delphi 4 and covered in Chapter 8). Dynamic arrays use
the same syntax as open arrays, with the difference that you can use a notation such as array of Integer to declare a variable, not just to pass
a parameter.

Type-Variant Open Array Parameters

Besides these typed open arrays, Delphi allows you to define type-variant or untyped open arrays. This special kind of array has an undefined
number of values, which can be handy for passing parameters.

Technically, the construct array of const allows you to pass an array with an undefined number of elements of different types to a routine at once.
For example, here is the definition of the Format function (we'll see how to use this function in Chapter 7, covering strings):

function Format (const Format: string;
const Args: array of const): string;

Essential Pascal

The second parameter is an open array, which gets an undefined number of values. In fact, you can call this function in the following ways:

N := 20;

S := "Total :';
Label 1. Caption :
Label 2. Caption :
Label 3. Caption :

Format (' Total: %', [N]);
Format ('Int: %, Float: %', [N, 12.4]);
Format ("% %', [S, N* 2]);

Notice that you can pass a parameter as either a constant value, the value of a variable, or an expression. Declaring a function of this kind is
simple, but how do you code it? How do you know the types of the parameters? The values of a type-variant open array parameter are compatible
with the TVarRec type elements.

Note: Do not confuse the TVarRec record with the TVarData record used by the Variant type itself. These two structures have a different aim
and are not compatible. Even the list of possible types is different, because TVarRec can hold Delphi data types, while TVarData can hold OLE
data types.

The TVarRec record has the following structure:

type
TVar Rec = record
case Byte of

vt | nt eger: (VInteger: Integer; VType: Byte);
vt Bool ean: (VBool ean: Bool ean);

vt Char : (VChar: Char);

vt Ext ended: (VExt ended: PExt ended);

vt String: (VString: PShortString);

vt Poi nter: (VPoi nter: Pointer);

vt PChar : (VPChar: PChar);

vt Cbj ect : (VObj ect: Thject);

vt Ol ass: (Vd ass: Td ass);

vt W deChar : (VW deChar: WdeChar);

vt PW deChar: (VPWdeChar: PWdeChar);

vt Ansi String: (VAnsi String: Pointer);

vt Currency: (VCurrency: PCurrency);

vt Vari ant : (Wariant: Pvariant);

vtlinterface: (M nterface: Pointer);
end;

Each possible record has the VType field, although this is not easy to see at first because it is declared only once, along with the actual Integer-
size data (generally a reference or a pointer).

Using this information we can actually write a function capable of operating on different data types. In the SumAll function example, | want to be
able to sum values of different types, transforming strings to integers, characters to the corresponding order value, and adding 1 for True Boolean
values. The code is based on a case statement, and is quite simple, although we have to dereference pointers quite often:

function SumAll (const Args: array of const): Extended;

var
I: Integer;

begi n
Result := 0;
for I := LowmArgs) to Hi gh (Args) do

case Args [1]. VType of
vtlnteger: Result :=
Result + Args [I]. VInteger;

vt Bool ean:
if Args [I].VBool ean then
Result := Result + 1;
vt Char :

Result := Result + Od (Args [I].VChar);

Essential Pascal

vt Ext ended:
Result := Result + Args [I].VExtended”";
vtString, vtAnsiString:
Result := Result + StrTolntDef ((Args [I].VString®), 0);
vt W deChar:
Result := Result + Od (Args [I].VWdeChar);
vt Currency:
Result := Result + Args [I].VCurrency”;
end; // case
end;

I've added this code to the OpenArr example, which calls the SumAll function when a given button is pressed:

procedure TForml. Button4C ick(Sender: TObject);

var
X: Ext ended;
Y: Integer;
begin

Y := 10;
X:=SumAll ([Y * Y, "k', True, 10.34, '99999']);
Showvessage (Fornmat (
"SumAll ([Y*Y, ''k'', True, 10.34, ''99999'']) => ', [X]));
end;

You can see the output of this call, and the form of the OpenArr example, in Figure 6.2.

Figure 6.2: The form of the OpenArr example, with the message box displayed when the Untyped button is pressed.

Openann

Delphi Calling Conventions

The 32-bit version of Delphi has introduced a new approach to passing parameters, known as fastcall: Whenever possible, up to three parameters
can be passed in CPU registers, making the function call much faster. The fast calling convention (used by default in Delphi 3) is indicated by the
register keyword.

The problem is that this is the default convention, and functions using it are not compatible with Windows: the functions of the Win32 APl must be
declared using the stdcall calling convention, a mixture of the original Pascal calling convention of the Win16 API and the cdecl calling convention
of the C language.

Essential Pascal

There is generally no reason not to use the new fast calling convention, unless you are making external Windows calls or defining Windows
callback functions. We'll see an example using the stdcall convention before the end of this chapter. You can find a summary of Delphi calling
conventions in the Calling conventions topic under Delphi help.

What Is a Method?

If you have already worked with Delphi or read the manuals, you have probably heard about the term "method". A method is a special kind of
function or procedure that is related to a data type, a class. In Delphi, every time we handle an event, we need to define a method, generally a
procedure. In general, however, the term method is used to indicate both functions and procedures related to a class.

We have already seen a number of methods in the examples in this and the previous chapters. Here is an empty method automatically added by
Delphi to the source code of a form:

procedure TForml. Buttonld ick(Sender: TObject);
begi n

{here goes your code}
end;

Forward Declarations

When you need to use an identifier (of any kind), the compiler must have already seen some sort of declaration to know what the identifier refers
to. For this reason, you usually provide a full declaration before using any routine. However, there are cases in which this is not possible. If
procedure A calls procedure B, and procedure B calls procedure A, when you start writing the code, you will need to call a routine for which the
compiler still hasn't seen a declaration.

If you want to declare the existence of a procedure or function with a certain name and given parameters, without providing its actual code, you
can write the procedure or function followed by the forward keyword:

procedure Hello; forward;

Later on, the code should provide a full definition of the procedure, but this can be called even before it is fully defined. Here is a silly example,
just to give you the idea:

procedure Doubl eHel | o; forward;

procedure Hell o;
begi n
if MessageDlg (' Do you want a doubl e nessage?',
nt Confirmation, [nbYes, nmbNo], 0) = nrYes then
Doubl eHel | o
el se
ShowMessage (' Hello');
end;

procedur e Doubl eHel | o;

begi n
Hel | o;
Hel | o;

end;

This approach allows you to write mutual recursion: DoubleHello calls Hello, but Hello might call DoubleHello, too. Of course there must be a
condition to terminate the recursion, to avoid a stack overflow. You can find this code, with some slight changes, in the DoubleH example.
| |£] Launch Examp|e|

Although a forward procedure declaration is not very common in Delphi, there is a similar case that is much more frequent. When you declare a
procedure or function in the interface portion of a unit (more on units in the next chapter), it is considered a forward declaration, even if the
forward keyword is not present. Actually you cannot write the body of a routine in the interface portion of a unit. At the same time, you must
provide in the same unit the actual implementation of each routine you have declared.

Essential Pascal

The same holds for the declaration of a method inside a class type that was automatically generated by Delphi (as you added an event to a form
or its components). The event handlers declared inside a TForm class are forward declarations: the code will be provided in the implementation
portion of the unit. Here is an excerpt of the source code of an earlier example, with the declaration of the Button1Click method:

type
TForml = cl ass(TForm
Li st Box1: TLi st Box;
Buttonl: TButton;
procedure Buttonld ick(Sender: TObject);
end;

Procedural Types

Another unique feature of Object Pascal is the presence of procedural types. These are really an advanced language topic, which only a few Delphi
programmers will use regularly. However, since we will discuss related topics in later chapters (specifically, method pointers, a technique heavily
used by Delphi), it's worth a quick look at them here. If you are a novice programmer, you can skip this section for now, and come back to it
when you feel ready.

In Pascal, there is the concept of procedural type (which is similar to the C language concept of function pointer). The declaration of a procedural
type indicates the list of parameters and, in the case of a function, the return type. For example, you can declare a new procedural type, with an
Integer parameter passed by reference, with this code:

type
IntProc = procedure (var Num | nteger);

This procedural type is compatible with any routine having exactly the same parameters (or the same function signature, to use C jargon). Here is
an example of a compatible routine:

procedur e Doubl eTheVal ue (var Val ue: |nteger);
begi n

Val ue := Value * 2;
end;

Note: In the 16-bit version of Delphi, routines must be declared using the far directive in order to be used as actual values of a procedural type.

Procedural types can be used for two different purposes: you can declare variables of a procedural type or pass a procedural type (that is, a
function pointer) as parameter to another routine. Given the preceding type and procedure declarations, you can write this code:

var
I P: IntProc;
X: Integer;

begi n
| P : = Doubl eTheVal ue;
X :=5;
1P (X);

end;

This code has the same effect as the following shorter version:

var
X: Integer;
begi n
X .= 5;

Doubl eTheVal ue (X);
end;

Essential Pascal

The first version is clearly more complex, so why should we use it? In some cases, being able to decide which function to call and actually calling it
later on can be useful. It is possible to build a complex example showing this approach. However, | prefer to let you explore a fairly simple one,
named ProcType. This example is more complex than those we have seen so far, to make the situation a little more realistic.

Simply create a blank project and place two radio buttons and a push button, as shown in Figure 6.3. This example is based on two procedures.
One procedure is used to double the value of the parameter. This procedure is similar to the version I've already shown in this section. A second
procedure is used to triple the value of the parameter, and therefore is named TripleTheValue:

Figure 6.3: The form of the ProcType example.

i@ Proc Type

Launch Example

procedure Tripl eTheVal ue (var Val ue: |nteger);

begi n

Val ue := Value * 3;

Showiessage ('Value tripled: ' + IntToStr (Value));
end;

Both procedures display what is going on, to let us know that they have been called. This is a simple debugging feature you can use to test
whether or when a certain portion of code is executed, instead of adding a breakpoint in it.

Each time a user presses the Apply button, one of the two procedures is executed, depending on the status of the radio buttons. In fact, when
you have two radio buttons in a form, only one of them can be selected at a time. This code could have been implemented by testing the value of
the radio buttons inside the code for the OnClick event of the Apply button. To demonstrate the use of procedural types, I've instead used a
longer but interesting approach. Each time a user clicks on one of the two radio buttons, one of the procedures is stored in a variable:

procedure TForml. Doubl eRadi oButtond i ck(Sender: Thject);
begi n

| P : = Doubl eTheVal ue;
end;

When the user clicks on the push button, the procedure we have stored is executed:

procedure TForml. Appl yButtond i ck(Sender: TObject);
begi n

1P (X);
end;

To allow three different functions to access the IP and X variables, we need to make them visible to the whole form; they cannot be declared
locally (inside one of the methods). A solution to this problem is to place these variables inside the form declaration:

type
TForml = cl ass(TForm
private
{ Private declarations }

Essential Pascal

IP: IntProc;
X: Integer;
end;

We will see exactly what this means in the next chapter, but for the moment, you need to modify the code generated by Delphi for the class type
as indicated above, and add the definition of the procedural type I've shown before. To initialize these two variables with suitable values, we can

handle the OnCreate event of the form (select this event in the Object Inspector after you have activated the form, or simply double-click on the

form). | suggest you refer to the listing to study the details of the source code of this example.

You can see a practical example of the use of procedural types in Chapter 9, in the section A Windows Callback Function.

Function Overloading

The idea of overloading is simple: The compiler allows you to define two functions or procedures using the same name, provided that the
parameters are different. By checking the parameters, in fact, the compiler can determine which of the versions of the routine you want to call.

Consider this series of functions extracted from the Math unit of the VCL:

function Mn (A B: Integer): Integer; overload;
function Mn (A B: Int64): Int64; overl oad;
function Mn (A B: Single): Single; overload;
function Mn (A B: Doubl e): Double; overl oad;
function Mn (A B: Extended): Extended; overl oad;

When you call Min (10, 20), the compiler easily determines that you're calling the first function of the group, so the return value will be an Integer.

The basic rules are two:

Each version of the routine must be followed by the overload keyword.
The differences must be in the number or type of the parameters, or both. The return type, instead, cannot be used to distinguish among
two routines.

Here are three overloaded versions of a ShowMsg procedure I've added to the OverDef example (an application demonstrating overloading and
default parameters):

procedure Showvsg (str: string); overl oad;
begi n

MessageDl g (str, mtinformation, [nmbOK], 0);
end;

Launch Example

procedure ShowMVsg (Format Str: string;
Parans: array of const); overl oad,
begi n
MessageDl g (Format (Format Str, Parans),
nt I nformation, [nmbOK], 0);

end;
procedure ShowMsg (l: Integer; Str: string); overl oad,
begi n
Showvsg (IntToStr (I) + "' " + Str);
end;

The three functions show a message box with a string, after optionally formatting the string in different ways. Here are the three calls of the
program:

Showivsg (' Hello');
Showvsg (' Total = %.', [100]);

Essential Pascal

Showivsg (10, 'MBytes');

What surprised me in a positive way is that Delphi's Code Parameters technology works very nicely with overloaded procedures and functions. As
you type the open parenthesis after the routine name, all the available alternatives are listed. As you enter the parameters, Delphi uses their type
to determine which of the alternatives are still available. In Figure 6.4 you can see that after starting to type a constant string Delphi shows only
the compatible versions (omitting the version of the ShowMsg procedure that has an integer as first parameter).

Figure 6.4: The multiple alternatives offered by Code Parameters for overloaded routines are filtered according to the
parameters already available.

B OverDefF.pas =] E3
= DverDefFl = = -
II} Farrm
- TFarm [
G Buttond procedure TForml.ButtoniClick (Zender: Tokhije
4w Button] Click begin
-~ ButtonZ ShowMsg (10, 'MEytes'):
-~ ButtonzZClick end;
(@ Button3
-+ Button3Click procedure TForml.Euttond4Click|(Sender: Tohie
[Buttond _ begin
s St e ShowMsg (' Total = sd.', [100]);
-~ Buttons S
. end; str: Stning
-« ButtonBClick F St String- P : i
G Buttont: ormatstr: Stnng; Farams: array of const
d ButtonEClick]:_lrm_:edure TForml.ButtonSClick (3ender: Tobje
-] Procedures LBEELT
EEI--[:I ke Me=z=sEBox ('Zomething wrong here!']):
end;
rocedure TForml.ButtoneClick (Zender: Tohflll
L I | bk
| 103 14 |Modified rert s

The fact that each version of an overloaded routine must be properly marked implies that you cannot overload an existing routine of the same unit
that is not marked with the overload keyword. (The error message you get when you try is: "Previous declaration of '<name>' was not marked
with the 'overload' directive.") However, you can overload a routine that was originally declared in a different unit. This is for compatibility with
previous versions of Delphi, which allowed different units to reuse the same routine name. Notice, anyway, that this special case is not an extra
feature of overloading, but an indication of the problems you can face.

For example, you can add to a unit the following code:

procedure MessageDl g (str: string); overl oad;
begi n

Di al ogs. MessageDl g (str, mtiInformation, [nmbOK], 0);
end;

This code doesn't really overload the original MessageDlg routine. In fact if you write:

MessageDig ('Hello');

you'll get a nice error message indicating that some of the parameters are missing. The only way to call the local version instead of the one of the
VCL is to refer explicitly to the local unit, something that defeats the idea of overloading:

Essential Pascal

Over Def F. MessageDi g (' Hello');

Default Parameters

A related new feature of Delphi 4 is that you can give a default value for the parameter of a function, and you can call the function with or without
the parameter. Let me show an example. We can define the following encapsulation of the MessageBox method of the Application global object,
which uses PChar instead of strings, providing two default parameters:

procedure MessBox (Msg: string;

Caption: string = 'Warning';
Fl ags: Longlnt = nmb_OK or nb_I conHand);
begi n

Appl i cati on. MessageBox (PChar (Msg),
PChar (Caption), Flags);
end;

With this definition, we can call the procedure in each of the following ways:

MessBox (' Sonething wong here!');
MessBox (' Somet hing wong here!', "Attention');
MessBox ('Hello', 'Message', nb_OK);

In Figure 6.5 you can see that Delphi's Code Parameters properly use a different style to indicate the parameters that have a default value, so you
can easily determine which parameters can be omitted.

Figure 6.5: Delphi's Code Parameters mark out with square brackets the parameters that have default values; you can omit these
in the call.

E OverDefF.pas M=] E3

= DverDefFl - = -
- Forml
L——_Iﬂ TFarm1 ;I
(} Button procedure TForml.ButtoniClick (Zender: ToObhject):
- ButtondClick bhegin
[ButtonZ ShowMsg (10, 'MEvytes'):
-~ ButtonzZClick. end:
[Button3
-« Button3Click procedure TForml.Buttond4Click(Sender: Tohject): I
[Buttond . begin
-~ ButtondClick ShowMsg (' Total = %d.', [100]):
(@ Button end:
~ 4 ButtonBClick
[Buttonk]]
- ButtonSClick]:_lrm_:edure TForml.ButtonSClick(Sender: ToObhject) !
&[] Procedures begin
EEI--[:I Usrae MesshBox i'bumething wrong here!']):
end; Mzg: String; [Caption: String = " arning']; [Flags: |nteger = 16] |
procedure TForml.ButtoneClick (Sender: TObhject) : _Ij
*II I k

| 108 13 |Modified Izt o

Essential Pascal

Notice that Delphi doesn't generate any special code to support default parameters; nor does it create multiple copies of the routines. The missing
parameters are simply added by the compiler to the calling code.

There is one important restriction affecting the use of default parameters: You cannot "skip" parameters. For example, you can't pass the third
parameter to the function after omitting the second one:

MessBox ('Hello', nb_OK); // error

This is the main rule for default parameters: In a call, you can only omit parameters starting from the last one. In other words, if you omit a
parameter you must omit also the following ones.

There are a few other rules for default parameters as well:

. Parameters with default values must be at the end of the parameters list.

. Default values must be constants. Obviously, this limits the types you can use with default parameters. For example, a dynamic array or
an interface type cannot have a default parameter other than nil; records cannot be used at all.

. Default parameters must be passed by value or as const. A reference (var) parameter cannot have a default value.

Using default parameters and overloading at the same time can cause quite a few problems, as the two features might conflict. For example, if |
add to the previous example the following new version of the ShowMsg procedure:

procedure ShowMsg (Str: string; |: Integer = 0); overl oad;
begi n
MessageDlg (Str + ': ' + IntToStr (1),

mtInformation, [nbOK], 0);
end;

then the compiler won't complain-this is a legal definition. However, the call:
Showivsg (' Hello");

is flagged by the compiler as Ambiguous overloaded call to 'ShowMsg'. Notice that this error shows up in a line of code that compiled correctly
before the new overloaded definition. In practice, we have no way to call the ShowMsg procedure with one string parameter, as the compiler
doesn't know whether we want to call the version with only the string parameter or the one with the string parameter and the integer parameter
with a default value. When it has a similar doubt, the compiler stops and asks the programmer to state his or her intentions more clearly.

Conclusion

Writing procedure and functions is a key element of programming, although in Delphi you'll tend to write methods -- procedures and functions
connected with classes and objects.

Instead of moving on to object-oriented features, however, the next few chapters give you some details on other Pascal programming elements,
starting with strings.

Next Chapter: Handling Strings

© Copyright Marco Cantu, Wintech Italia Srl 1995-2000

Essential Pascal

. Www.marcocantu.com

M AR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

Wi marcocantu com

Marco Cantu's Chapter 7
Essential Pascal Handling Strings

String handling in Delphi is quite simple, but behind the scenes the situation is quite complex. Pascal has a traditional way of
handling strings, Windows has its own way, borrowed from the C language, and 32-bit versions of Delphi include a powerful long
string data type, which is the default string type in Delphi.

Types of Strings

In Borland's Turbo Pascal and in 16-bit Delphi, the typical string type is a sequence of characters with a length byte at the beginning,
indicating the current size of the string. Because the length is expressed by a single byte, it cannot exceed 255 characters, a very low
value that creates many problems for string manipulation. Each string is defined with a fixed size (which by default is the maximum,
255), although you can declare shorter strings to save memory space.

A string type is similar to an array type. In fact, a string is almost an array of characters. This is demonstrated by the fact that you
can access a specific string character using the [] notation.

To overcome the limits of traditional Pascal strings, the 32-bit versions of Delphi support long strings. There are actually three string
types:

. The ShortString type corresponds to the typical Pascal strings, as described before. These strings have a limit of 255
characters and correspond to the strings in the 16-bit version of Delphi. Each element of a short string is of type ANSIChar
(the standard character type).

. The ANSIString type corresponds to the new variable-length long strings. These strings are allocated dynamically, are
reference counted, and use a copy-on-write technique. The size of these strings is almost unlimited (they can store up to
two billion characters!). They are also based on the ANSIChar type.

. The WideString type is similar to the ANSIString type but is based on the WideChar type-it stores Unicode characters.

Using Long Strings

If you simply use the string data type, you get either short strings or ANSI strings, depending on the value of the $H compiler
directive. $H+ (the default) stands for long strings (the ANSIString type), which is what is used by the components of the Delphi
library.

Delphi long strings are based on a reference-counting mechanism, which keeps track of how many string variables are referring to
the same string in memory. This reference-counting is used also to free the memory when a string isn't used anymore-that is, when
the reference count reaches zero.

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

If you want to increase the size of a string in memory but there is something else in the adjacent memory, then the string cannot
grow in the same memory location, and a full copy of the string must therefore be made in another location. When this situation
occurs, Delphi's run-time support reallocates the string for you in a completely transparent way. You simply set the maximum size of
the string with the SetLength procedure, effectively allocating the required amount of memory:

SetLength (Stringl, 200);

The SetLength procedure performs a memory request, not an actual memory allocation. It reserves the required memory space for
future use, without actually using the memory. This technique is based on a feature of the Windows operating systems and is used
by Delphi for all dynamic memory allocations. For example, when you request a very large array, its memory is reserved but not
allocated.

Setting the length of a string is seldom necessary. The only case in which you must allocate memory for the long string using
SetLength is when you have to pass the string as a parameter to an API function (after the proper typecast), as I'll show you shortly.

Looking at Strings in Memory

To help you better understand the details of memory management for strings, I've written the simple StrRef example. In this
program | declare two global strings: Strl and Str2. When the first of the two buttons is pressed, the program assigns a constant
string to the first of the two variables and then assigns the second variable to the first:

Strl := "Hello';
Str2 .= Str1,;

Besides working on the strings, the program shows their internal status in a list box, using the following StringStatus function:

function StringStatus (const Str: string): string;

begin
Result := '"Address: ' + IntToStr (Integer (Str)) +
", Length: ' + IntToStr (Length (Str)) +
', References: ' + IntToStr (Plnteger (Integer (Str) - 8)") +
', Value: ' + Str;
end;

It is vital in the StringStatus function to pass the string parameter as a const parameter. Passing this parameter by copying will cause
the side effect of having one extra reference to the string while the function is being executed. By contrast, passing the parameter
via a reference (var) or constant (const) parameter doesn't imply a further reference to the string. In this case I've used a const
parameter, as the function is not supposed to modify the string.

To obtain the memory address of the string (useful to determine its actual identity and to see when two different strings refer to the
same memory area), I've simply made a hard-coded typecast from the string type to the Integer type. Strings are references-in
practice, they're pointers: Their value holds the actual memory location of the string.

To extract the reference count, I've based the code on the little-known fact that the length and reference count are actually stored in
the string, before the actual text and before the position the string variable points to. The (negative) offset is -4 for the length of the
string (a value you can extract more easily using the Length function) and -8 for the reference count.

Keep in mind that this internal information about offsets might change in future versions of Delphi; there is also no guarantee that
similar undocumented features will be maintained in the future.

By running this example, you should get two strings with the same content, the same memory location, and a reference count of 2,

Essential Pascal

as shown in the upper part of the list box of Figure 2.1. Now if you change the value of one of the two strings (it doesn't matter
which one), the memory location of the updated string will change. This is the effect of the copy-on-write technique.

Figure 7.1: The StrRef example shows the internal status of two strings, including the current reference count.

/¥ Stiing References _ O]

Str =5k
Strl - Addresz: 12276540, Length: 5. References: 2, Walue: Hello
Strd - Addresz: 12276540, Length: 5. References: 2,V alue: Hello
St [2]:="&'
Strl - Addresz: 12276560, Length: 5, References: 1, Value: Hallo
Strd - Addresz: 12276540, Length: 5, References: 1, Value: Hello

; Launch Example

We can actually produce this effect, shown in the second part of the list box of Figure 7.1, by writing the following code for the
OnClick event handler of the second button:

procedur e TFornttr Ref . Bt nChangeC i ck(Sender: TObj ect);

begi n
Str1 [2] :="a";
Li stBox1.ltems. Add ('Strl [2] :="'"a""");
Li stBox1.ltems. Add ('Strl - ' + StringStatus (Strl));
Li stBox1.ltems. Add ('Str2 - ' + StringStatus (Str2));
end,

Notice that the code of the BtnChangeClick method can be executed only after the BtnAssignClick method. To enforce this, the
program starts with the second button disabled (its Enabled property is set to False); it enables the button at the end of the first
method. You can freely extend this example and use the StringStatus function to explore the behavior of long strings in many other
circumstances.

Delphi Strings and Windows PChars

Another important point in favor of using long strings is that they are null-terminated. This means that they are fully compatible with
the C language null-terminated strings used by Windows. A null-terminated string is a sequence of characters followed by a byte that
is set to zero (or null). This can be expressed in Delphi using a zero-based array of characters, the data type typically used to
implement strings in the C language. This is the reason null-terminated character arrays are so common in the Windows API
functions (which are based on the C language). Since Pascal's long strings are fully compatible with C null-terminated strings, you can
simply use long strings and cast them to PChar when you need to pass a string to a Windows API function.

For example, to copy the caption of a form into a PChar string (using the API function GetWindowText) and then copy it into the
Caption of the button, you can write the following code:

Essential Pascal

procedure TForml. Buttonldick (Sender: TObject);
var
S1: String;
begin
Set Length (S1, 100);
Get W ndowText (Handle, PChar (Sl1), Length (S1));
Buttonl. Caption := S1;
end;

You can find this code in the LongStr example. Note that if you write this code but fail to allocate the memory for the string with
SetLength, the program will probably crash. If you are using a PChar to pass a value (and not to receive one as in the code above),
the code is even simpler, because there is no need to define a temporary string and initialize it. The following line of code passes the
Caption property of a label as a parameter to an API function, simply by typecasting it to PChar:

Set W ndowText (Handl e, PChar (Label 1. Caption));

When you need to cast a WideString to a Windows-compatible type, you have to use PWideChar instead of PChar for the conversion.
Wide strings are often used for OLE and COM programs.

Having presented the nice picture, now | want to focus on the pitfalls. There are some problems that might arise when you convert a
long string into a PChar. Essentially, the underlying problem is that after this conversion, you become responsible for the string and
its contents, and Delphi won't help you anymore. Consider the following limited change to the first program code fragment above,
Button1Click:

procedure TForml. Button2d i ck(Sender: Tnhject);
var
S1: String;
begi n
SetLength (S1, 100);
Get W ndowText (Handl e, PChar (Sl1), Length (S1));
S1 :=S1 +"' isthetitle'; // this won't work
Buttonl. Caption := S1;
end,

This program compiles, but when you run it, you are in for a surprise: The Caption of the button will have the original text of the
window title, without the text of the constant string you have added to it. The problem is that when Windows writes to the string
(within the GetWindowText API call), it doesn't set the length of the long Pascal string properly. Delphi still can use this string for
output and can figure out when it ends by looking for the null terminator, but if you append further characters after the null
terminator, they will be skipped altogether.

How can we fix this problem? The solution is to tell the system to convert the string returned by the GetWindowText API call back to
a Pascal string. However, if you write the following code:

S1 := String (S1);

the system will ignore it, because converting a data type back into itself is a useless operation. To obtain the proper long Pascal
string, you need to recast the string to a PChar and let Delphi convert it back again properly to a string:

Sl := String (PChar (S1));

Actually, you can skip the string conversion, because PChar-to-string conversions are automatic in Delphi. Here is the final code:

procedure TForml. Button3C ick(Sender: TObject);

Essential Pascal

var
S1: String;
begin
Set Length (S1, 100);
Get W ndowText (Handl e, PChar (S1), Length (S1));
S1 := String (PChar (S1));
S1:=S1+"' isthetitle';
Button3. Caption := S1;
end;

An alternative is to reset the length of the Delphi string, using the length of the PChar string, by writing:

SetLength (S1, Strlen (PChar (S1))); | Launch Example

You can find three versions of this code in the LongStr example, which has three buttons to execute them. However, if you just need
to access the title of a form, you can simply use the Caption property of the form object itself. There is no need to write all this
confusing code, which was intended only to demonstrate the string conversion problems. There are practical cases when you need to
call Windows API functions, and then you have to consider this complex situation.

Formatting Strings

Using the plus (+) operator and some of the conversion functions (such as IntToStr) you can indeed build complex strings out of
existing values. However, there is a different approach to formatting numbers, currency values, and other strings into a final string.
You can use the powerful Format function or one of its companion functions.

The Format function requires as parameters a string with the basic text and some placeholders (usually marked by the % symbol)
and an array of values, one for each placeholder. For example, to format two numbers into a string you can write:

Format ('First %, Second %', [nl, n2]);

where nl and n2 are two Integer values. The first placeholder is replaced by the first value, the second matches the second, and so
on. If the output type of the placeholder (indicated by the letter after the % symbol) doesn't match the type of the corresponding
parameter, a runtime error occurs. Having no compile-time type checking is actually the biggest drawback of using the Format
function.

The Format function uses an open-array parameter (a parameter that can have an arbitrary number of values), something I'll discuss
toward the end of this chapter. For the moment, though, notice only the array-like syntax of the list of values passed as the second
parameter.

Besides using %d, you can use one of many other placeholders defined by this function and briefly listed in Table 7.1. These
placeholders provide a default output for the given data type. However, you can use further format specifiers to alter the default
output. A width specifier, for example, determines a fixed number of characters in the output, while a precision specifier indicates the
number of decimal digits. For example,

Format ('98d', [nl]);

converts the number nl into an eight-character string, right-aligning the text (use the minus (-) symbol to specify left-justification)
filling it with white spaces.

Table 7.1: Type Specifiers for the Format Function

Essential Pascal

TYPE SPECIFIER DESCRIPTION

d (decimal) The corresponding integer value is converted to a string of decimal digits.

x (hexadecimal) The corresponding integer value is converted to a string of hexadecimal digits.

p (pointer) The corresponding pointer value is converted to a string expressed with hexadecimal digits.
s (string) The corresponding string, character, or PChar value is copied to the output string.
e (exponential) The corresponding floating-point value is converted to a string based on exponential notation.

f (floating point) The corresponding floating-point value is converted to a string based on floating point notation.

The corresponding floating-point value is converted to the shortest possible decimal string using either floating-

g (general) point or exponential notation.

n (number) The corresponding floating-point value is converted to a floating-point string but also uses thousands
separators.
The corresponding floating-point value is converted to a string representing a currency amount. The

m (money) conversion is based on regional settings-see the Delphi Help file under Currency and date/time formatting

variables.

The best way to see examples of these conversions is to experiment with format strings yourself. To make this easier I've written the
FmtTest program, which allows a user to provide formatting strings for integer and floating-point numbers. As you can see in Figure
7.2, this program displays a form divided into two parts. The left part is for Integer numbers, the right part for floating-point
numbers.

Each part has a first edit box with the numeric value you want to format to a string. Below the first edit box there is a button to
perform the formatting operation and show the result in a message box. Then comes another edit box, where you can type a format
string. As an alternative you can simply click on one of the lines of the ListBox component, below, to select a predefined formatting
string. Every time you type a new formatting string, it is added to the corresponding list box (note that by closing the program you
lose these new items).

Figure 7.2: The output of a floating-point value from the FmtTest program

Essential Pascal

123425412

Wieight is Zd poundsz Murnber: %g

IfaMatalflaln ", Fam=r

The code of this example simply uses the text of the various controls to produce its output. This is one of the three methods
connected with the Show buttons:

procedure TFornFnt Test.Btnlntdick(Sender: TObject);
begin
Showivessage (Format (EditFntlnt. Text,
[StrTolnt (Editlnt.Text)]));
/1 if the itemis not there, add it
if ListBoxInt.Iltens.|IndexOF (EditFntlnt. Text) < O then
Li stBoxInt.ltens. Add (EditFntlnt. Text);
end;

The code basically does the formatting operation using the text of the EditFmtint edit box and the value of the Editint control. If the
format string is not already in the list box, it is then added to it. If the user instead clicks on an item in the list box, the code moves
that value to the edit box:

procedure TFornFnt Test. Li st BoxI nt A ick(Sender: TObject);

begin
EditFntInt. Text := ListBoxlnt.ltenms [
Li st BoxI nt.Item ndex];
end;

Conclusion

Essential Pascal

Strings a certainly a very common data type. Although you can safely use them in most cases without understanding how they work,
this chapter should have made clear the exact behavior of strings, making it possible for you to use all the power of this data type.

Strings are handled in memory in a special dynamic way, as happens with dynamic arrays. This is the topic of the next chapter.
Next Chapter: Memory

© Copyright Marco Cantu, Wintech ltalia Srl 1995-2000

Essential Pascal
. Www.marcocantu.com

MﬁR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

www marcocantu com

Marco Cantu's Chapter 8
Essential Pascal Memory

Author's Note: This chapter will cover memory handling, discuss the various memory areas, and introduce dynamic arrays.
Temporarily only this last part is available.

Delphi 4 Dynamic Arrays

Traditionally, the Pascal language has always had fixed-size arrays. When you declare a data type using the array construct, you
have to specify the number of elements of the array. As expert programmers probably know, there were a few techniques you could
use to implement dynamic arrays, typically using pointers and manually allocating and freeing the required memory.

Delphi 4 introduces a very simple implementation of dynamic arrays, modeling them after the dynamic long string type I've just
covered. As long strings, dynamic arrays are dynamically allocated and reference counted, but they do not offer a copy-on-write
technique. That's not a big problem, as you can deallocate an array by setting its variable to nil.

You can now simply declare an array without specifying the number of elements and then allocate it with a given size using the
SetLength procedure. The same procedure can also be used to resize an array without losing its content. There are also other string-
oriented procedures, such as the Copy function, that you can use on arrays.

Here is a small code excerpt, underscoring the fact that you must both declare and allocate memory for the array before you can
start using it:

procedure TForml. Buttonld i ck(Sender: Thject);
var

Arrayl: array of Integer;
begin

Arrayl [1] := 100; // error

Set Length (Arrayl, 100);

Arrayl [99] := 100; // K

end;

As you indicate only the number of elements of the array, the index invariably starts from 0. Generic arrays in Pascal account for a
non-zero low bound and for non-integer indexes, two features that dynamic arrays don't support. To learn the status of a dynamic
array, you can use the Length, High, and Low functions, as with any other array. For dynamic arrays, however, Low always returns 0,
and High always returns the length minus one. This implies that for an empty array High returns -1 (which, when you think about it,

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

is a strange value, as it is lower than that returned by Low).

Figure 8.1: The form of the DynArr example

' Dynar M= E3

Fill Set value

:] Launch Example
Lo

Create aliaz and truncate

After this short introduction | can show you a simple example, called DynArr and shown in Figure 8.1. It is indeed simple because
there is nothing very complex about dynamic arrays. I'll also use it to show a few possible errors programmers might make. The
program declares two global arrays and initializes the first in the OnCreate handler:

var
Arrayl, Array2: array of |nteger;

procedure TForml. For nCr eat e(Sender: Thj ect);
begin

/1 allocate

Set Length (Arrayl, 100);
end;

This sets all the values to zero. This initialization code makes it possible to start reading and writing values of the array right away,
without any fear of memory errors. (Assuming, of course, that you don't try to access items beyond the upper bound of the array.)
For an even better initialization, the program has a button that writes into each cell of the array:

procedure TFornml. btnFill dick(Sender: Thject);
var
I: Integer;
begin
for I := Low (Arrayl) to H gh (Arrayl) do
Arrayl [I] :=1;
end;

The Grow button allows you to modify the size of the array without losing its contents. You can test this by using the Get value
button after pressing the Grow button:

procedure TForml. bt nGowd i ck(Sender: Thject);
begi n

/1l grow keepi ng existing val ues

SetLength (Arrayl, 200);
end,

procedure TForml. bt nGet d i ck(Sender: TObject);
begin
/] extract

Essential Pascal

Caption := IntToStr (Arrayl [99]);
end;

The only slightly complex code is in the OnClick event of the Alias button. The program copies one array to the other one with the :=
operator, effectively creating an alias (a new variable referring to the same array in memory). At this point, however, if you modify
one of the arrays, the other is affected as well, as they both refer to the same memory area:

procedure TForml. bt nAliasC ick(Sender: TObject);
begin

/1 alias

Array2 := Arrayl;

/1 change one (both change)

Array2 [99] := 1000;

/1 show t he other

Caption := IntToStr (Arrayl [99]);

The btnAliasClick method does two more operations. The first is an equality test on the arrays. This tests not the actual elements of
the structures but rather the memory areas the arrays refer to, checking whether the variables are two aliases of the same array in
memory:

procedure TForml. bt nAli asCd i ck(Sender: TCObject);
begin

if Arrayl = Array2 then
Beep;
[l truncate first array
Arrayl := Copy (Array2, 0, 10);
end,

The second is a call to the Copy function, which not only moves data from one array to the other, but also replaces the first array
with a new one created by the function. The effect is that the Arrayl variable now refers to an array of 11 elements, so that pressing
the Get value or Set value buttons produces a memory error and raises an exception (unless you have range-checking turned off, in
which case the error remains but the exception is not displayed). The code of the Fill button continues to work fine even after this
change, as the items of the array to modify are determined using its current bounds.

Conclusion

This chapter temporarily covers only dynamic arrays, certainly an important element for memory management, but only a portion of
the entire picture. More material will follow.

The memory structure described in this chapter is typical of Windows programming, a topic I'll introduce in the next chapter (without
going to the full extent of using the VCL, though).

Next Chapter: Windows Programming

© Copyright Marco Cantu, Wintech ltalia Srl 1995-2000

Essential Pascal

Wwww.marcocantu.com

M AR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

Wi MarCoCcaniu.com

Marco Cantu's Chapter 9:
Essential Pascal Windows Programming

Delphi provides a complete encapsulation of the low-level Windows API using Object Pascal and the Visual Component Library (VCL),
so it is rarely necessary to build Windows applications using plain Pascal and calling Windows API functions directly. Nonetheless,
programmers who want to use some special techniques not supported by the VCL still have that option in Delphi. You would only
want to take this approach for very special cases, such as the development of new Delphi components based on unusual API calls,
and | don't want to cover the details. Instead, we'll look at a few elements of Delphi's interaction with the operating system and a
couple of techniques that Delphi programmers can benefit from.

Windows Handles

Among the data types introduced by Windows in Delphi, handles represent the most important group.
The name of this data type is THandle, and the type is defined in the Windows unit as:

type
THandl e = LongWr d;

Handle data types are implemented as numbers, but they are not used as such. In Windows, a handle is a reference to an internal
data structure of the system. For example, when you work with a window (or a Delphi form), the system gives you a handle to the
window. The system informs you that the window you are working with is window number 142, for example. From that point on,
your application can ask the system to operate on window number 142—moving it, resizing it, reducing it to an icon, and so on. Many
Windows API functions, in fact, have a handle as the first parameter. This doesn't apply only to functions operating on windows;
other Windows API functions have as their first parameter a GDI handle, a menu handle, an instance handle, a bitmap handle, or one
of the many other handle types.

In other words, a handle is an internal code you can use to refer to a specific element handled by the system, including a window, a

bitmap, an icon, a memory block, a cursor, a font, a menu, and so on. In Delphi, you seldom need to use handles directly, since they
are hidden inside forms, bitmaps, and other Delphi objects. They become useful when you want to call a Windows API function that

is not supported by Delphi.

To complete this description, here is a simple example demonstrating Windows handles. The WHandle program has a simple form,
containing just a button. In the code, | respond to the OnCreate event of the form and the OnClick event of the button, as indicated
by the following textual definition of the main form:

obj ect For m\Handl e: TFor MAHandl e
Caption = 'Wndow Handl e’
OnCreate = FornCreate

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

obj ect BtnCall APl : TButton

Caption = "Call API'
Ondick = BtnCall APICick
end

end

As soon as the form is created, the program retrieves the handle of the window corresponding to the form, by accessing the Handle
property of the form itself. We call IntToStr to convert the numeric value of the handle into a string, and we append that to the
caption of the form, as you can see in Figure 9.1:

procedure TFor MAHandl e. For nCr eat e(Sender: TObj ect);
begin

Caption := Caption + ' ' + IntToStr (Handle);
end;

Because FormCreate is a method of the form's class, it can access other properties and methods of the same class directly.
Therefore, in this procedure we can simply refer to the Caption of the form and its Handle property directly.

Figure 9.1: The WHandle example shows the handle of the form window. Every time you run this program you'll get a
different value.

/' window Handle 672 =] E3

:| Launch Example

If you run this program several times you'll generally get different values for the handle. This value, in fact, is determined by
Windows and is sent back to the application. (Handles are never determined by the program, and they have no predefined values;
they are determined by the system, which generates new values each time you run a program.)

When the user presses the button, the program simply calls a Windows API function, SetWindowText, which changes the text or
caption of the window passed as the first parameter. To be more precise, the first parameter of this APl function is the handle of the
window we want to modify:

procedure TFor mAHandl e. Bt nCal | API Cl i ck(Sender: TObj ect);
begi n

Set W ndowText (Handle, "Hi');
end;

This code has the same effect as the previous event handler, which changed the text of the window by giving a new value to the
Caption property of the form. In this case calling an API function makes no sense, because there is a simpler Delphi technique. Some
API functions, however, have no correspondence in Delphi, as we'll see in more advanced examples later in the book.

External Declarations

Another important element for Windows programming is represented by external declarations. Originally used to link the Pascal code
to external functions that were written in assembly language, the external declaration is used in Windows programming to call a
function from a DLL (a dynamic link library). In Delphi, there are a number of such declarations in the Windows unit:

Essential Pascal

/1 forward declaration
function LineTo (DC. HDC, X, Y: Integer): BOO.; stdcall;

/1 external declaration (instead of actual code)
function LineTo; external 'gdi32.dll' name 'LineTo';

This declaration means that the code of the function LineTo is stored in the GDI32.DLL dynamic library (one of the most important
Windows system libraries) with the same name we are using in our code. Inside an external declaration, in fact, we can specify that
our function refer to a function of a DLL that originally had a different name.

You seldom need to write declarations like the one just illustrated, since they are already listed in the Windows unit and many other
Delphi system units. The only reason you might need to write this external declaration code is to call functions from a custom DLL, or
to call undocumented Windows functions.

Note: In the 16-bit version of Delphi, the external declaration used the name of the library without the extension, and was
followed by the name directive (as in the code above) or by an alternative index directive, followed by the ordinal number of the
function inside the DLL. The change reflects a system change in the way libraries are accessed: Although Win32 still allows access
to DLL functions by number, Microsoft has stated this won't be supported in the future. Notice also that the Windows unit replaces
the WinProcs and WinTypes units of the 16-bit version of Delphi.

A Windows Callback Function

We've seen in Chapter 6 that Objet Pascal supports procedural types. A common use of procedural types is to provide callback
functions to a Windows API function.

First of all, what is a callback function? The idea is that some API function performs a given action over a number of internal
elements of the system, such as all of the windows of a certain kind. Such a function, also called an enumerated function, requires as
a parameter the action to be performed on each of the elements, which is passed as a function or procedure compatible with a given
procedural type. Windows uses callback functions in other circumstances, but we'll limit our study to this simple case.

Now consider the EnumWindows API function, which has the following prototype (copied from the Win32 Help file):

BOOL Enumw ndows (
VWNDENUMPROC | pEnunfunc, // address of call back function
LPARAM | Param // application-defined val ue

);

Of course, this is the C language definition. We can look inside the Windows unit to retrieve the corresponding Pascal language
definition:

function Enumi ndows (
| pEnunfunc: TFNWAJEnunPr oc;
| Param LPARAM : BOOL; stdcall;

Consulting the help file, we find that the function passed as a parameter should be of the following type (again in C):

BOOL CALLBACK EnumW ndowsProc (
HWD hwnd, // handl e of parent w ndow
LPARAM | Param // application-defined val ue

)i

Essential Pascal

This corresponds to the following Delphi procedural type definition:

type
EnumiN ndowsProc = function (Hwnd: THandl e;
Param Pointer): Bool ean; stdcall;

The first parameter is the handle of each main window in turn, while the second is the value we've passed when calling the
EnumWindows function. Actually in Pascal the TFNWndEnumProc type is not properly defined; it is simply a pointer. This means we
need to provide a function with the proper parameters and then use it as a pointer, taking the address of the function instead of
calling it. Unfortunately, this also means that the compiler will provide no help in case of an error in the type of one of the
parameters.

Windows requires programmers to follow the stdcall calling convention every time we call a Windows API function or pass a
callback function to the system. Delphi, by default, uses a different and more efficient calling convention, indicated by the register
keyword.

Here is the definition of a proper compatible function, which reads the title of the window into a string, then adds it to a ListBox of a
given form:

function CGetTitle (Hmd: THandl e; Param Pointer): Bool ean; stdcall;
var

Text: string;
begi n

SetLength (Text, 100);

Get W ndowText (Hwnd, PChar (Text), 100);

For nCal | Back. Li st Box1. Itens. Add (

IntToStr (Hwnd) + ': ' + Text);

Result := True;

end;

The form has a ListBox covering almost its whole area, along with a small panel on the top hosting a button. When the button is
pressed, the EnumWindows API function is called, and the GetTitle function is passed as its parameter:

procedure TFornCal | back.BtnTitl esC ick(Sender: TCObject);
var
EWPr oc: EnumN ndowsPr oc;
begin
Li st Box1.1tens. C ear;
EWProc := GetTitle;
EnumiN ndows (@WProc, O0);
end;

I could have called the function without storing the value in a temporary procedural type variable first, but | wanted to make clear
what is going on in this example. The effect of this program is actually quite interesting, as you can see in Figure 9.2. The Callback
example shows a list of all the existing main windows running in the system. Most of them are hidden windows you usually never see
(and many actually have no caption).

Figure 9.2: The output of the Callback example, listing the current main windows (visible and hidden).

Essential Pascal

M Callback Function Call =] B3

2R3 :I
1544: Ezzential Pazcal - Microzaft [nternet Explorer

1288

9336

300

g3

1184: Replace

B76: allaire Homesite 4.0.1 - [C:YWIMDOWSAD eaktu:np"-.WIJ
2624: Open

1164: Debug

1160:

984: Thiz iz a hidden form wzed to trap Dreamweayver mes:
B40: HomeSite 4.0

1316

2892

1816:

1704: Explonng - C:AMWWINDOW S \DezkiophwebSites \mar
2R36:

2Rd00;

2840

= [

= Launch Example

A Minimal Windows Program

To complete the coverage of Windows programming and the Pascal language, | want to show you a very simple but complete
application built without using the VCL. The program simply takes the command-line parameter (stored by the system in the cmdLine
global variable) and then extracts information from it with the ParamCount and ParamStr Pascal functions. The first of these functions
returns the number of parameters; the second returns the parameter in a given position.

Although users seldom specify command-line parameters in a graphical user interface environment, the Windows command-line
parameters are important to the system. For example, once you have defined an association between a file extension and an
application, you can simply run a program by selecting an associated file. In practice, when you double-click on a file, Windows starts
the associated program and passes the selected file as a command-line parameter.

Here is the complete source code of the project (a DPR file, not a PAS file):

program St rpar am

uses
W ndows;

begin
/1 show the full string
MessageBox (0, cndLi ne,
" St rParam Command Line', MB_OK);

/1l show the first parameter
i f ParanCount > 0 then
MessageBox (0, PChar (Paranttr (1)),

Essential Pascal

"1st StrParam Parameter', M3 _(OK)
el se
MessageBox (0, PChar (' No paraneters'),
"1st StrParam Paraneter', M3 _(K);
end.

The output code uses the MessageBox API function, simply to avoid getting the entire VCL into the project. A pure Windows program
as the one above, in fact, has the advantage of a very small memory footprint: The executable file of the program is about 16
Kbytes.

To provide a command-line parameter to this program, you can use Delphi's Run > Parameters menu command. Another technique
is to open the Windows Explorer, locate the directory that contains the executable file of the program, and drag the file you want to
run onto the executable file. The Windows Explorer will start the program using the name of the dropped file as a command-line
parameter. Figure 9.3 shows both the Explorer and the corresponding output.

Figure 9.3: You can provide a command-line parameter to the StrParam example by dropping a file over the
executable file in the Windows Explorer.

StrParam Command Line |

"ChdevhezsPazcalbStParam' Strparam. exe’’ CADEVAESSPAST1VSTRPARAMMS TRPARAM.DPR

Launch Example

Conclusion

In this chapter we've seen a low-level introduction to Windows programming, discussing handles and a very simple Windows
program. For normal Windows programming tasks, you'll generally use the visual development support provided by Delphi and based
on the VCL. But this is beyond the scope of this book, which is the Pascal language.

Next chapter covers variants, a very strange addition to Pascal type system, introduced to provide full OLE support.
Next Chapter: Variants

© Copyright Marco Cantu, Wintech ltalia Srl 1995-2000

Essential Pascal

. Www.marcocantu.com

M ﬁR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

www marcocantu com

Marco Cantu's Chapter 10
Essential Pascal Variants

To provide full OLE support, the 32-bit version of Delphi includes the Variant data type. Here | want to discuss this data type from a
general perspective. The Variant type, in fact, has a pervasive effect on the whole language, and the Delphi components library also
uses them in ways not related to OLE programming.

Variants Have No Type

In general, you can use variants to store any data type and perform numerous operations and type conversions. Notice that this goes
against the general approach of the Pascal language and against good programming practices. A variant is type-checked and
computed at run time. The compiler won't warn you of possible errors in the code, which can be caught only with extensive testing.
On the whole, you can consider the code portions that use variants to be interpreted code, because, as with interpreted code, many
operations cannot be resolved until run time. This affects in particular the speed of the code.

Now that I've warned you against the use of the Variant type, it is time to look at what it can do. Basically, once you've declared a
variant variable such as the following:

var
V: Vari ant;

you can assign to it values of several different types:

10;
"Hel l o, World';

\Y
V
\Y 45. 55;

Once you have the variant value, you can copy it to any compatible-or incompatible-data type. If you assign a value to an
incompatible data type, Delphi performs a conversion, if it can. Otherwise it issues a run-time error. In fact, a variant stores type
information along with the data, allowing a number of run-time operations; these operations can be handy but are both slow and
unsafe.

Consider the following example (called VariTest), which is an extension of the code above. | placed three edit boxes on a new form,
added a couple of buttons, and then wrote the following code for the OnClick event of the first button:

procedure TForml. Buttonld i ck(Sender: Thject);
var

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

V: Vari ant;
begin

V .= 10;

Editl. Text :=V,

V := "Hello, Wrld";

Edit2. Text =V,

V := 45.55;

Edit3. Text : =V,
end;

Funny, isn't it? Besides assigning a variant holding a string to the Text property of an edit component, you can assign to the Text a
variant holding an integer or a floating-point number. As you can see in Figure 10.1, everything works.

Figure 10.1: The output of the VariTest example after the Assign button has been pressed.

S Variant Test _ O]

10

Launch Example

Hella, W arld

CompLite

45,55

Even worse, you can use the variants to compute values, as you can see in the code related to the second button:

procedure TForml. Button2d ick(Sender: TObject);

var
V: Vari ant;
N I nteger;
begin
V := Editl. Text;
N := Integer(V) * 2;
V:=N
Editl. Text =V,
end;

Writing this kind of code is risky, to say the least. If the first edit box contains a number, everything works. If not, an exception is
raised. Again, you can write similar code, but without a compelling reason to do so, you shouldn't use the Variant type; stick with the
traditional Pascal data types and type-checking approach. In Delphi and in the VCL (Visual Component Library), variants are basically
used for OLE support and for accessing database fields.

Variants in Depth

Delphi includes a variant record type, TVarData, which has the same memory layout as the Variant type. You can use this to access
the actual type of a variant. The TVarData structure includes the type of the Variant, indicated as VType, some reserved fields, and
the actual value.

Essential Pascal

The possible values of the VType field correspond to the data types you can use in OLE automation, which are often called OLE types
or variant types. Here is a complete alphabetical list of the available variant types:

. VvarArray

. varBoolean
. varByRef

. varCurrency
. varDate

. varDispatch
. varDouble
. varEmpty

. varError

. Vvarinteger
. varNull

. varOleStr

. varSingle

. varSmallint
. varString

. varTypeMask
. varUnknown
. varVariant

You can find descriptions of these types in the Values in variants topic in the Delphi Help system.

There are also many functions for operating on variants that you can use to make specific type conversions or to ask for information
about the type of a variant (see, for example, the VarType function). Most of these type conversion and assignment functions are
actually called automatically when you write expressions using variants. Other variant support routines (look for the topic Variant
support routines in the Help file) actually operate on variant arrays.

Variants Are Slow!

Code that uses the Variant type is slow, not only when you convert data types, but also when you add two variant values holding an
integer each. They are almost as slow as the interpreted code of Visual Basic! To compare the speed of an algorithm based on
variants with that of the same code based on integers, you can look at the VSpeed example.

This program runs a loop, timing its speed and showing the status in a progress bar. Here is the first of the two very similar loops,
based on integers and variants:

procedure TForml. Buttonld i ck(Sender: Thject);
var
timel, tine2: TDateTi ne;
nl, n2: Variant;
begin
timel : = Now,
nl := 0;
n2 := 0;
ProgressBar 1. Position := O;
while n1 < 5000000 do
begin
n2 := n2 + nl,
Inc (nl);
if (nl nbd 50000) = 0 then
begin
ProgressBar 1. Position := nl div 50000;
Appl i cation. ProcessMessages;
end;

Essential Pascal

end;
// we nust use the result
Total := n2;

time2 = Now,
Label 1. Caption : = Format Dat eTi e (
‘n:ss', Time2-Tinmel) + ' seconds';
end,

The timing code is worth looking at, because it's something you can easily adapt to any kind of performance test. As you can see, the
program uses the Now function to get the current time and the FormatDateTime function to output the time difference, asking only
for the minutes ("n") and the seconds ("ss") in the format string. As an alternative, you can use the Windows API's GetTickCount
function, which returns a very precise indication of the milliseconds elapsed since the operating system was started.

In this example the speed difference is actually so great that you'll notice it even without a precise timing. Anyway, you can see the
results for my own computer in Figure 10.2. The actual values depend on the computer you use to run this program, but the
proportion won't change much.

Figure 10.2: The different speeds of the same algorithm, based on integers and variants (the actual timing varies
depending on the computer), as shown by the VSpeed example.

,..-r"' Variantz Speed Test

Yariants | .31 zeconds

:{ Launch Example

0.02 seconds

Conclusion

Variants are so different from traditional Pascal data types that I've decided to cover them in this short separate chapter. Although
their role is in OLE programming, they can be handy to write quick and dirty programs without having even to think about data types.
As we have seen, this affects performance by far.

Now that we have covered most of the language features, let me discuss the overall structure of a program and the modularization
offered by units.

Next Chapter: Program and Units

© Copyright Marco Cantu, Wintech Italia Srl 1995-2000

Essential Pascal

. Www.marcocantu.com

HAR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

Wi marcocantu com

Marco Cantu's Chapter 11
Essential Pascal Program and Units

Delphi applications make intensive use of units, or program modules. Units, in fact, were the basis of the modularity in the language
before classes were introduced. In a Delphi application, every form has a corresponding unit behind it. When you add a new form to
a project (with the corresponding toolbar button or the File > New Form menu command), Delphi actually adds a new unit, which
defines the class for the new form.

Units

Although every form is defined in a unit, the reverse is not true. Units do not need to define forms; they can simply define and make
available a collection of routines. By selecting the File > New menu command and then the Unit icon in the New page of the Object
Repository, you add a new blank unit to the current project. This blank unit contains the following code, delimiting the sections a unit
is divided into:

unit Unit1l;

interface

i mpl ement ati on

end.

The concept of a unit is simple. A unit has a unique name corresponding to its filename, an interface section declaring what is visible
to other units, and an implementation section with the real code and other hidden declarations. Finally, the unit can have an optional

initialization section with some startup code, to be executed when the program is loaded into memory; it can also have an optional
finalization section, to be executed on program termination.

The general structure of a unit, with all its possible sections, is the following:

uni t uni t Name;
interface

/'l other units we need to refer to
uses
A'I B 1 C;

/'l exported type definition
type

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal
newType = TypeDefinition;

/] exported constants
const
Zero = 0;

/1 gl obal variables
var
Total : Integer;

/1 list of exported functions and procedures
procedure MyProc;

i mpl ement ati on

uses
D, E
/1 hidden gl obal variable
var
Partial Total : |nteger;

/1 all the exported functions nmust be coded
procedure MyProc;
begin
/1 ... code of procedure MyProc
end,

initialization
/1 optional initialization part

finalization
/1 optional clean-up code

end.

The uses clause at the beginning of the interface section indicates which other units we need to access in the interface portion of the
unit. This includes the units that define the data types we refer to in the definition of other data types, such as the components used
within a form we are defining.

The second uses clause, at the beginning of the implementation section, indicates more units we need to access only in the
implementation code. When you need to refer to other units from the code of the routines and methods, you should add elements in
this second uses clause instead of the first one. All the units you refer to must be present in the project directory or in a directory of
the search path (you can set the search path for a project in the Directories/Conditionals page of the project’s Options dialog box).

C++ programmers should be aware that the uses statement does not correspond to an include directive. The effect of a uses
statement is to import just the precompiled interface portion of the units listed. The implementation portion of the unit is
considered only when that unit is compiled. The units you refer to can be both in source code format (PAS) or compiled format
(DCU), but the compilation must have taken place with the same version of the Delphi.

The interface of a unit can declare a number of different elements, including procedures, functions, global variables, and data types.
In Delphi applications, the data types are probably used the most often. Delphi automatically places a new class data type in a unit
each time you create a form. However, containing form definitions is certainly not the only use for units in Delphi. You can continue
to have traditional units, with functions and procedures, and you can have units with classes that do not refer to forms or other visual
elements.

Units and Scope

Essential Pascal

In Pascal, units are the key to encapsulation and visibility, and they are probably even more important
than the private and public keywords of aclass. (In fact, aswe'll seein the next chapter, the effect of the
private keyword is related to the scope of the unit containing the class.) The scope of an identifier (such
as avariable, procedure, function, or adatatype) is the portion of the code in which the identifier is
accessible. The basic ruleisthat an identifier is meaningful only within its scope—that is, only within the
block in which it is declared. Y ou cannot use an identifier outside its scope. Here are some examples.

Local variables: If you declare a variable within the block defining a routine or a method, you cannot use this variable
outside that procedure. The scope of the identifier spans the whole procedure, including nested routines (unless an identifier
with the same name in the nested routine hides the outer definition). The memory for this variable is allocated on the stack
when the program executes the routine defining it. As soon as the routine terminates, the memory on the stack is
automatically released.

Global hidden variables: If you declare an identifier in the implementation portion of a unit, you cannot use it outside the
unit, but you can use it in any block and procedure defined within the unit. The memory for this variable is allocated as soon
as the program starts and exists until it terminates. You can use the initialization section of the unit to provide a specific
initial value.

Global variables: If you declare an identifier in the interface portion of the unit, its scope extends to any other unit that uses
the one declaring it. This variable uses memory and has the same lifetime as the previous group; the only difference is in its
visibility.

Any declarations in the interface portion of a unit are accessible from any part of the program that includes the unit in its uses clause.
Variables of form classes are declared in the same way, so that you can refer to a form (and its public fields, methods, properties,
and components) from the code of any other form. Of course, it's poor programming practice to declare everything as global. Besides
the obvious memory consumption problems, using global variables makes a program less easy to maintain and update. In short, you
should use the smallest possible number of global variables.

Units as Namespaces

The uses statement is the standard technique to access the scope of another unit. At that point you can access the definitions of the
unit. But it might happen that two units you refer to declare the same identifier; that is, you might have two classes or two routines
with the same name.

In this case you can simply use the unit name to prefix the name of the type or routine defined in the unit. For example, you can
refer to the ComputeTotal procedure defined in the given Totals unit as Totals.ComputeTotal. This should not be required very often,
as you are strongly advised against using the same name for two different things in a program.

However, if you look into the VCL library and the Windows files, you'll find that some Delphi functions have the same name as (but
generally different parameters than) some Windows API functions available in Delphi itself. An example is the simple Beep procedure.

If you create a new Delphi program, add a button, and write the following code:

procedure TForml. Buttonld i ck(Sender: Thject);
begin

Beep;
end;

then as soon as you press the button you'll hear a short sound. Now, move to the uses statement of the unit and change the code
from this:

uses
W ndows, Messages, SysUils, C asses,

Essential Pascal

to this very similar version (simply moving the SysUtils unit before the Windows unit):

uses
SysUils, Wndows, Messages, O asses,

If you now try to recompile this code, you'll get a compiler error: "Not enough actual parameters.” The problem is that the Windows
unit defines another Beep function with two parameters. Stated more generally, what happens in the definitions of the first units you
include in the uses statement might be hidden by corresponding definitions of later units. The safe solution is actually quite simple:

procedure TForml. Buttonld i ck(Sender: Thject);
begin

SysUti | s. Beep;
end,

This code will compile regardless of the order of the units in the uses statements. There are few other name clashes in Delphi, simply
because Delphi code is generally hosted by methods of classes. Having two methods with the same name in two different classes
doesn’t create any problem. The problems arise only with global routines.

Units and Programs

A Delphi application consists of two kinds of source code files: one or more units and one program file. The units can be considered
secondary files, which are referred to by the main part of the application, the program. In theory, this is true. In practice, the
program file is usually an automatically generated file with a limited role. It simply needs to start up the program, running the main
form. The code of the program file, or Delphi project file (DPR), can be edited either manually or by using the Project Manager and
some of the Project Options related to the application object and the forms.

The structure of the program file is usually much simpler than the structure of the units. Here is the source code of a sample program
file:

program Proj ect 1;

uses
For ns,
Unitl in “Unitl. PAS {FormlDat eForni};

begi n
Application.lnitialize;
Appli cation. Creat eForm (TFor ml, Forml);
Appl i cation. Run;

end.

As you can see, there is simply a uses section and the main code of the application, enclosed by the begin and end keywords. The
program’s uses statement is particularly important, because it is used to manage the compilation and linking of the application.

Conclusion

At least for the moment, this chapter on the structure of a Pascal application written in Delphi or with one of the latest versions of
Turbo Pascal, is the last of the book. Feel free to email me your comment and requests.

If after this introduction on the Pascal language you want to delve into the object-oriented elements of Object Pascal in Delphi, you
can refer to my published book Mastering Delphi 5 (Sybex, 1999). For more information on this and more advanced books of mine
(and of other authors as well) you can refer to my web site, www.marcocantu.com. The same site hosts updated versions of this

http://www.marcocantu.com/

Essential Pascal

book, and its examples.
Back to the Cover Page

© Copyright Marco Cantu, Wintech ltalia Srl 1995-2000

Essential Pascal

. Www.marcocantu.com

M AR . Marco's Delphi Books
. Essential Pascal - Web Site
. Essential Pascal - Local Index

www marcocantu com

Marco Cantu's Appendix A
Essential Pascal Glossary

This is a short glossary of technical terms used throughout the book. They might also be defined elsewhere in the text, but I've
decided to collect them here anyway, to make it easier to find them.

Heap (Memory)

The term Heap indicates a portion of the memory available to a program, also called dynamic memory area. The heap is the area in

which the allocation and deallocation of memory happens in random order. This means that if you allocate three blocks of memory in
sequence, they can be destroyed later on in any order. The heap manager takes care of all the details for you, so you simply ask for
new memory with GetMem or by calling a constructor to create an object, and Delphi will return you a new memory block (optionally
reusing memory blocks already discarded).

The heap is one of the three memory areas available to an application. The other two are the global area (this is where global
variables live) and the stack. Contrary to the heap, global variables are allocated when the program starts and remain there until it
terminates. For the stack see the specific entry in this glossary.

Delphi uses the heap for allocating the memory of each and every object, the text of the strings, for dynamic arrays, and for specific
requests of dynamic memory (GetMem).

Windows allows an application to have up to 2 GigaBytes of address space, most of which can be used by the heap.

Stack (Memory)

The term Stack indicates a portion of the memory available to a program, which is dynamic but is allocated and deallocated following
specific order. The stack allocation is LIFO, Last In First Out. This means that the last memory object you've allocated will be the first
to be deleted. Stack memory is typically used by routines (procedure, function, and method calls). When you call a routine, its
parameters and return type are placed on the stack (unless you optimize the call, as Delphi does by default). Also the variables you
declare within a routine (using a var block before the begin statement) are stored on the stack, so that when the routine terminates
they'll be automatically removed (before getting back to the calling routine, in LIFO order).

The stack is one of the three memory areas available to an application. The other two are called global memory and heap. See the
heap entry in this glossary..

Delphi uses the stack for routine parameters and return values (unless you use the default register calling convention), for local
routine variables, for Windows API function calls, and so on.

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

Windows applications can reserve a large amount of memory for the stack. In Delphi you set this in the linker page of the project
options, however, the default generally does it. If you receive a stack full error message this is probably because you have a function
recursively calling itself forever, not because the stack space is too limited.

New requested terms

. Dynamic

. Static

. Virtual

. memory leak
. painting

. literal

. array

. APl

. class reference
. class method
. parent

. owner

. self

© Copyright Marco Cantu, Wintech Italia Srl 1995-2000

Essential Pascal

H.ﬁnRCﬁ 6&8

www marcocantu com

Marco Cantu's
Essential Pascal

www.marcocantu.com
Marco's Delphi Books
Essential Pascal - Web Site
Essential Pascal - Local Index

Appendix B:
Examples

This is a list of the examples which are part of Essential Pascal and available for download:

Chapter 3

ResStr: resource strings = Launch
Range: ordinal types ranges =% Launch
TimeNow: time manipulation == Launch

Chapter 4

GPF: general protection faults with null pointers =& Launch

Chapter 5

IfTest: if statements =& Launch
Loops: for and while statements = Launch

Chapter 6

OpenArr: open array parameters =3 Launch

DoubleH: simple procedures =< Launch

ProcType: procedural types =% Launch

OverDef: overloading and default parameters == Launch

Chapter 7

StrRef: strings reference counting =% Launch
LongsStr: using long strings =% Launch
FmtTest: formatting examples == Launch

Chapter 8

http://www.marcocantu.com/
http://www.marcocantu.com/books
http://www.marcocantu.com/epascal

Essential Pascal

DynArr: dynamic arrays = Launch

WHandle: Windows handles = Launch
Callback: Windows callback functions = Launch
StrParam: command line parameters = Launch

Chapter 10

VariTest: simple variant operations == Launch
VariSpeed: the speed of variants == Launch

© Copyright Marco Cantu, Wintech ltalia Srl 1995-2000

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi

Marco CanTU'Ss
EssenTiaAL DeLPHI

A Friendly Introductory
Guide to Borland Delphi

http://www.marcocantu.com/edelphi

Copyright 1996-2002 Marco Cantu
Revision 1.03 - April 13, 2002

http://www.marcocantu.com/edelphi

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi

INTRODUCTION

address http://www.marcocantu.com/epascal), I decided to follow up with an

introduction to Delphi. Again most of the material you'll find here was in the first editions of my
“printed” book Mastering Delphi, the best selling Delphi book I have written. Due to space constraints and
because many Delphi programmers look for more advanced information, in the latest edition this material was
completely omitted. To overcome the absence of this information, I have started putting together this second on-
line book, titled Essential Delphi.

ﬁ fter the successful publishing of the e-book Essential Pascal (available on my web site at the

Copyright

The text and the source code of this book are copyrighted by Marco Cantu. Of course, you can use the
programs and adapt them to your own needs with no limitation, only you are not allowed to use them in books,
training material, and other copyrighted formats without my permission (or in case you are using limited portions,
referring to the original). Feel free to link your site with this one, but please do not duplicate the material (on
your web site, on a CD) as it is subject to frequent changes and updates. Passing a copy to a friend, occasionally,
is certainly something you can do if you do not modify it in any way.

You can print out this book both for personal use and for non-profit training (user-groups, schools, and
universities are free to distribute a printed versions as long as they don’t charge more than the printing costs and
make it clear that this material is freely available, referring readers to the Essential Delphi web site
(http://www.marcocantu.com/edelphi) for updates.

Book Structure

The book structure is still under development, as the book evolves. This is the current structure:

Chapter 1: A Form is a Window:
Chapter 2: Highlights of the Delphi Environment:

Chapter 3: The Object Repository and the Delphi Wizards:
Chapter 4: A Tour of the Basic Components
Chapter 5: Creating and Handling Menus | some figures still missing |
Chapter 6: Multimedia Fun [all figures missing |
Planned chapters:
Chapter 7: Exploring Forms
Chapter 8: Delphi Database 101
Chapter 9: Reporting Basics

http://www.marcocantu.com/epascal
http://www.marcocantu.com/edelphi

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi

Source Code

The source code of all the examples mentioned in the book is available on the book web site. The code
has the same Copyright as the book: Feel free to use it at will but don't publish it on other documents or site.
Links back to this site are welcome.

Feedback

Please let me know of any errors you find (indicating revision number and page number), but also of
topics not clear enough for a beginner. I'll be able to devote time to the project depending also on the feedback I
receive. Let me know also which other topics (not covered in Mastering Delphi) you'd like to see here.

For reporting errors please use the books section of my newsgroup, as described on
www.marcocantu.com or use my mailbox (which gets far too jammed) at marco@marcocantu.com.

Acknowledgments

I have first started thinking about on-line publishing after Bruce Eckel's experience with Thinking in
Java. I'm a friend of Bruce and think he really did a great job with that book and few others. After the
overwhelming response of the "Essential Pascal" book, I started this new one and plan releasing the two as a
printed book introducing Delphi (the only problem being to find a publisher).

About the Author

Marco Cantu lives in Piacenza, Italy. After writing C++ and Object Windows Library books and articles,
he delved into Delphi programming. He is the author of the Mastering Delphi book series, published by Sybex, as
well as the advanced Delphi Developers Handbook. He writes articles for many magazines, including The Delphi
Magazine, speaks at Delphi and Borland conferences around the world, and teaches Delphi classes at basic and
advanced levels. More recently, he's specializing in XML technologies, still making most of his programming in
Delphi. Of course, you can learn more details about Marco and his work by visiting his web site,
WWwWw.marcocantu.com.

Donations

I'll probably set up an account on one of those donation/contribution systems, to let people who have
enjoyed the book and learned from it, particularly if programming is their job (and not a hobby) and they do it for
profit, contribute to its development. No extra material is offered to those donating to the book fund, only
because [want to let anyone (particularly students and people leaving in poor countries) benefit from the
availability of this material. Information will be available on the book web site.

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi

Table of Contents

Marco Cantu's

Essential Delphi 1
Introduction 2
Copyright 2
Book Structure 2
Source Code 3
Feedback 3
Acknowledgments 3
About the Author 3
Donations 3
Chapter 1: A Form Is a Window 8
Creating Your First Form 8
Adding a Title 9
Saving the Form 10
Using Components 10
Changing Properties 11
Responding to Events 13
Compiling and Running a Program 16
Changing Properties at Run-Time 18
Adding Code to the Program 18
A Two-Way Tool 20
Looking at the Source Code 20
The Textual Description of the Form 23
The Project File 25
Using Component Templates 26
What’s Next 26
Chapter 2: Highlights of the Delphi Environment 27
Different Versions of Delphi 27
Asking for Help 27
Delphi Menus and Commands 28
The File Menu 29
The Edit Menu 30
The Search Menu 32
The View Menu 34
The Project Menu 35
The Run Menu 36
The Component Menu 37
The Database Menu 37
The Tools Menu 37
The Help Menu 38
The Delphi Toolbar 39
The Local Menus 39

Working with the Form Designer
The Component Palette
The Object Inspector
The Alignment Palette
Writing Code in the Editor
Using Editor Bookmarks
Code Insight
Code Completion
Code Templates
Code Parameter
Managing Projects
The Project Manager
Setting Project Options
Compiling a Project
Exploring a Compiled Program
The Integrated Debugger
The Object Browser
Additional Delphi Tools
The Files Produced by the System
What’s Next

Chapter three: The Object Repository and the Delphi Wizards

The Object Repository
The New Page
The Forms Page
The Dialogs Page
The Data Modules Page
The Projects Page

Delphi Wizards
The Database Form Wizard
The Application Wizard
The Dialog Wizard

Customizing the Object Repository
Adding New Application Templates
The Empty Project Template
Adding New Form Templates to the Object Repository
The Object Repository Options
Installing new DLL Wizards

What’s Next

Chapter 4: A Tour of the Basic Components

Windows Own Components

Clicking a Button
The Buttons Example

Clicking the Mouse Button

Adding Colored Text to a Form
The LabelCo Example

Dragging from One Component to Another
The Code for the Dragging Example

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi

40
42
43
44
44
44
45
45
46
46
47
47
48
48
49
49
50
50
50
51
53
53
54
56
57
57
57
58
58
61
63
63
63
65
65
66
67
67
69
69
70
70
74
74
75
78
80

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi

Accepting Input from the User 81
Handling the Input Focus 81

A Generic OnEnter Event Handler 83
Entering Numbers 84
Sophisticated Input Schemes 87
Creating a Simple Editor 88
The Font Dialog Box 89
Creating a Rich Editor 90
Making Choices 91
Grouping Radio Buttons 92
The Phrases1 Example 93

A List with Many Choices 95
The Form of the Phrases2 Example 96
Working with the List Boxes 98
Removing a Selected String from the Other List Box 98
Allowing Multiple Selections 102
The Third Version of the Phrases Example 102
Using a CheckListBox Component 105
Many Lists, Little Space 106
Choosing a Value in a Range 108
The Scroll Color Example 108
What’s Next 110
Chapter 5: Creating and Handling Menus 111
The Structure of the Main Menu 111
Different Roles of Menu Items 112
Building a Menu with the Menu Designer 112
The Standard Structure of a Menu 113
Shortcut Keys and Hotkeys 113
Using the Predefined Menu Templates 114
Responding to Menu Commands 114
The Code Generated by the Menu Designer 115
The Code of the MenuOne Example 117
Moditying the Menu at Run-Time 118
Changing Menu Items at Run-Time 118
Disabling Menu Items and Hiding Pull-Down Menus 119
Using Radio Menu Items 120
Creating Menu Items Dynamically 122
Creating Menus and Menu Items Dynamically 125
Short and Long Menus 126
Graphical Menu Items 127
Customizing the Menu Check Mark 127
Bitmap Menu Items 129
Owner-Draw Menu Items 132
Customizing the System Menu 135
Building a Complete Menu 137
The File Menu 138

Short-Circuit Evaluation 139

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi

The Paragraph Menu 142
The Font Menu 143
The Options Menu 145
Pop-Up Menus 146
An Automatic Local Menu 147
Modifying a Pop-Up Menu When It Is Activated 147
Handling Pop-Up Menus Manually 148
What’s Next 150
Chapter 6: Multimedia Fun 151
Windows Default Sounds 151
Every Box Has a Beep 152
From Beeps to Music 154
The Media Player Component 155
Playing Sound Files 156
Running Videos 157

A Video in a Form 157
Working with a CD Drive 159
What's Next 161

Epilogue 162

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi

CHAPTER 1: A Form Is A WinDoOwW

window? We’ll do it by using a form. As the first part of the title suggests, a form really is a
window in disguise. There is no real difference between the two concepts, at least from a
general point of view.

‘ N ’ indows applications are usually based on windows. So, how are we going to create our first

If you look closely, a form is always a window, but the reverse isn’t always true. Some Delphi
components are windows, too. A push button is a window. A list box is a window. To avoid
confusion, I'll use the term form to indicate the main window of an application or a similar window
and the term window in the broader sense.

Creating Your First Form

Even though you have probably already created at least some simple applications in Delphi, I’m going to
show you the process again, to highlight some interesting points. Creating a form is one of the easiest operations
in the system: you only need to open Delphi, and it will automatically create a new, empty form for you, as you
can see in the figure below. That’s all there is to it.

e Formi1 =10l x|

If you already have another project open, choose File | New | Application to close the old project (you
may be prompted to save some of the files) and open a new blank project. Believe it or not, you already have a
working application. You can run it, using the Run button on the toolbar or the Run | Run menu command, and it
will result in a standard Windows program. Of course, this application won’t be very useful, since it has a single
empty window with no capabilities, but the default behavior of any Windows window.

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi

Adding a Title

Before we run the application, let’s make a quick change. The title of the form is Forml. For a user, the
title of the main window stands for the name of the application. Let’s change Form! to something more
meaningful. When you first open Delphi, the Object Inspector window should appear on the left side of the form
(if it doesn’t, open it by choosing View | Object Inspector or pressing the F11 key):

Object Inspector A
Form1 TForm1 -
Properties I Eventgl

Action -

ActiveContol

Align alHone

AlphaBlend Falze

AlphaBlendyalue [255
Ha&nchaorz [akLeft.akT op]

AukaS croll True

AutoSize Falze

BiDlitdode bdLeftT oRight
Borderlconz [biSyztembd e, bibkd i

BorderShyle bzS5izeable

Borderafidth 1]

Caption Faorm

ClientHeight 202

Clientifidth 323

Colar []cBtnFace
Congtraints [TSizeCaonstraints]

CHAD Tiue |
&1l shown =

The Object Inspector shows the properties of the selected component. The window contains a tab control
with two pages. The first page is labeled Properties. The other page is labeled Events and shows a list of events
that can take place in the form or in the selected component.

The properties are listed in alphabetical order, so it’s quite easy to find the ones you want to change (it is
also possible to group them by category, as we'll see in the next chapter, but this feature is seldom used by Delphi
developers). We can change the title of the form simply by changing the Capt ion property, which is selected by
default. While you type a new caption, you can see the title of the form change. If you type Hello, the title of the
form changes immediately. As an alternative, you can modify the internal name of the form by changing its Name
property. If you have not entered a new caption, the new value of the Name property will be used for the
Caption property, too.

Only a few of the properties of a component change while you type the new value. Most
are applied when you finish the editing operation and press the Enter key (or move the
input focus to a new property).

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 10

Although we haven’t done much work, we have built a full-blown application, with a system menu and
the default Minimize, Maximize, and Close buttons. You can resize the form by dragging its borders, move it by
dragging its caption, maximize it to full-screen size, or minimize it. It works, but again, it’s not very useful. If you
look at the icon in the Taskbar, you’ll see that something isn’t right. Instead of showing the caption of the form as
the icon caption, it shows the name of the project, something like Project]. We can fix this by giving a name to
the project, which we’ll do by saving it to disk with a new name.

Saving the Form

Select the Save Project or Save Project As command from the File menu, and Delphi will ask you to give
a name to the source code file associated with the form, and then to name the project file. Since the name of the
project should match the caption of the form (Hello), I’'ve named the form source file HELLOF . PAS, which
stands for Hello Form. I’ve given the project file the name HELLO . DPR.

Unfortunately, we cannot use the same name for the project and the unit that defines the form; for each
application, these items must have unique names. You can add the letter F, add Form, call every form unit
MainForm, or choose any other naming convention you like. I tend to use a name similar to the project name, as
simply calling it Mainform means you’ll end up with a number of forms (in different projects) that all have the
same name.

The name you give to the project file is used by default at run-time as the title of the application,
displayed by Windows in the taskbar while the program is running. For this reason, if the name of the project
matches the caption of the main form, it will also correspond to the name on the taskbar. You can also change the
title of the application by using the Application page of the Project Options dialog box (choose Project | Options),
or by writing a line of code to change the Tit 1e property of the Application global object.

Using Components

Now it’s time to start placing something useful in our Hello form. Forms can be thought of as component
containers. Each form can host a number of components or controls. You can choose a component from the
Components Palette above the form, in the Delphi window. There are four simple ways to place a component on
a form. If you choose the Button component from the Standard page of the Components Palette, for example, you
can do any of the following:

e Click on the component, move the mouse cursor to the form, press the left mouse button to set
the upper-left corner of the button, and drag the mouse to set the button’s size.

e Select the component as above, and then simply click on the form to place a button of the default
height and width.

e Double-click on the icon in the Components Palette, and a component of that type will be added
in the center of the form.

e Shift-click on the component icon, and place several components of the same kind in the form
using one of the above procedures.

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 1

Our form will have only one button, so we’ll center it in the form. You can do this by hand, with a little help from
Delphi. When you choose View | Alignment Palette, a toolbox with alignment icons appears:

This toolbox makes a number of operations easy. It includes buttons to align controls or to center them in the
form. Using the two buttons in the third column, you can place a component in the center of the form. Although
we’ve placed the button in the center, as soon as you run the program, you can resize the form so that the button
won’t be in the center anymore. So the button is only in the center of the form at startup. Later on, we’ll see how
to make the button remain in the center after the form is resized, by adding some code. For now, our first priority
is to change the button’s label.

Changing Properties

Like the form, the button has a Capt ion property that we can use to change its label (the text displayed inside
it). As a better alternative, we can change the name of the button. The name is a kind of internal property, used
only in the code of the program. However, as [mentioned earlier, if you change the name of a button before
changing its caption, the Capt ion property will have the same text as the Name property. Changing the Name
property is usually a good choice, and you should generally do this early in the development cycle, before you
write much code.

It is quite common to define a naming convention for each type of component
(usually the full name or a shorter version, such as “btn” for Button). If you use a
different prefix for each type of component (as in “ButtonHello” or “BtnHello”), the
combo box above the Object Inspector will list the components of the same kind in a
group, because they are alphabetically sorted. If you instead use a suffix, naming the
components “HelloButton” or “HelloBtn,” components of the same kind will be in
different positions on the list. In this second case, however, finding a particular
component using the keyboard might be faster. In fact, when the Object Inspector is
selected you can type a letter to jump to the first component whose name starts with
that letter.

Besides setting a proper name for a component, you often need to change its Caption property. There
are at least two reasons to have a caption different from the name. The first is that the name often follows a
naming convention (as described in the note above) that you won’t want to use in a caption. The second reason is
that captions should be descriptive, and therefore they often use two or more words, as in my Say hello button. If
you try to use this text as the Name property, however, Delphi will show an error message:

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 12

eror x|

Q "Say Hello" is not a walid component name,

The name is an internal property, and it is used as the name of a variable referring to the component.
Therefore, for the Name property, you must follow the rules for naming an identifier in the Pascal language:

* An identifier is a sequence of letters, digits, or underscore characters of any length (although only the
first 63 characters are significant).

* The first character of an identifier cannot be a number; it must be a letter or the underscore character.
* No spaces are allowed in an identifier.

* Identifiers are not case-sensitive, but usually each word in an identifier begins with a capital letter, as
in BtnHello. But btnhello, btnHello, and BTNHello refer to this same identifier.

You can use the IsvalidIdent system function to check whether a given string is a
valid identifier. The Checkld example calls this function while you type an identifier in its
edit box, and changes the text color to indicate whether the string is valid (green) or not
(red). The code of the example is quite simple, and you can look at it yourself on the disk.
Try running this program to check any doubts about allowed component names.

+I Check Identifier % - O] x|

| dentifier:

| Launch Example

my1buttoné

Here is a summary of the changes we have made to the properties of the button and form. At times, I’ll
show you the structure of the form of the examples as it appears once it has been converted in a readable format
(I’1l describe how to convert a form into text later in this chapter). I won’t show you the entire textual description
of a form (which is often quite long), but rather only its key elements. I won’t include the lines describing the
position of the components, their sizes, or some less important default values. Here is the code:
object Forml: TForml

Caption = 'Hello'

OnClick = FormClick
object BtnHello: TButton
Caption 'Say hello'

OnClick BtnHelloClick
end

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 13

end

This description shows some attributes of the components and the events they respond to. We will see the
code for these events in the following sections. If you run this program now, you will see that the button works
properly. In fact, if you click on it, it will be pushed, and when you release the mouse button, the on-screen
button will be released. The only problem is that when you press the button, you might expect something to
happen; but nothing does, because we haven’t assigned any action to the mouse-click yet.

Responding to Events

When you press the mouse button on a form or a component, Windows informs your application of the
event by sending it a message. Delphi responds by receiving an event notification and calling the appropriate
event-handler method. As a programmer, you can provide several of these methods, both for the form itself and
for the components you have placed in it. Delphi defines a number of events for each kind of component. The list
of events for a form is different from the list for a button, as you can easily see by clicking on these two
components while the Events page is selected in the Object Inspector. Some events are common to both
components.

There are several techniques you can use to define a handler for the OnC1ick event of the button:

* Select the button, either in the form or by using the Object Inspector’s combo box (called the Object
Selector), select the Events page, and double-click in the white area on the right side of the OnClick
event. A new method name will appear, BtnHelloClick.

* Select the button, select the Events page, and enter the name of a new method in the white area on the
right side of the OnC1ick event. Then press the Enter key to accept it.

* Double-click on the button, and Delphi will perform the default action for this component, which is to
add a handler for the OnC11ick event. Other components have completely different default actions.

With any of these approaches, Delphi creates a procedure named BtnHelloClick (or the name you’ve
provided) in the code of the form and opens the source code file in that position:

B Unitl . pas M=] B3

= it | ==
f} Farrm
=84 TFom procedure TForml.btnHelloClick (Sender: TObject); &
- dh binHeloClick begin
; -2 Fields |
- Uszes end : J
end.
KIS of
| 27 1 |Modified [Inzert i

The default action for a button is to add a procedure to respond to the click event. Even if you are not sure of the
effect of the default action of a component, you can still double-click on it. If you end up adding a new procedure

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 14

you don’t need, just leave it empty. Empty method bodies generated by Delphi will be removed as soon as you
save the file. In other words, if you don’t put any code in them, they simply go away.

When you want to remove an event-response method you have written from the
source code of a Delphi application, you could delete all of the references to it.
However, a better way is to delete all of the code from the corresponding procedure,
leaving only the declaration and the begin and end keywords. The text should be
the same as what Delphi automatically generated when you first decided to handle
the event. When you save or compile a project, Delphi removes any empty methods
from the source code and from the form description (including the reference to them
in the Events page of the Object Inspector). Conversely, to keep an event-handler
that is still empty, consider adding a comment to it, so that it will not be removed.

Now we can start typing some instructions between the begin and end keywords that delimit the code
of the procedure. Writing code is usually so simple that you don’t need to be an expert in the language to start
working with Delphi. (If you need to brush up your knowledge of Pascal you can refer to my online Essential
Pascal book, while if you need derailede coverage of Object Pascal you can refer to my Mastering Delphi series.)

You should type only the line in the middle, but I’ve included the whole source code of the procedure to
let you know where you need to add the new code in the editor:
procedure TForml.BtnHelloClick (Sender: TObject) ;
begin
MessageDlg ('Hello, guys', mtInformation, [mbOK], 0);
end;
The code is simple. There is only a call to a function, MessageD1g, to display a small message dialog
box. The function has four parameters. Notice that as you type the open parenthesis, the Delphi editor will show
you the list of parameters in a hint window, making it simpler to remember them.

E Unitl.pas M=l E3
it | = -
Ci Farm1
= procedure TForml.btnHelloClick (Sender: Tobject) ;J
-4 btrHeloClick begin

B0 Fields MesszageDlg (°

- Uses end ; const Mzg: Stnng: DigType: TMzgDIgTepe; Buttons: ThagDIgButtons; HelpCre: Integer |
end,

KIS of
| 28 16 |Modified [Insert A

If you need more information about the parameters of this function and their meanings, you can click on
its name in the edit window and press F1. This brings up the Help information. Since this is the first code we are
writing, here is a summary of that description (the rest of this book, however, generally does not duplicate the
reference information available in Delphi’s Help system, concentrating instead on examples that demonstrate the
features of the language and environment):

* The first parameter of the MessageDlg function is the string you want to display: the message.

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 15

* The second parameter is the type of message box. You can choose mtWarning, mtError,
mtInformation, or mtConfirmation. For each type of message, the corresponding caption is used and a
proper icon is displayed at the side of the text.

* The third parameter is a set of values indicating the buttons you want to use. You can choose mbYes,
mbNo, mbOK, mbCancel, or mbHelp. Since this is a set of values, you can have more than one of
these values. Always use the proper set notation with square brackets ([and]) to denote the set, even if
you have only one value, as in the line of the code above. (Essential Pascal discusses Pascal sets.)

* The fourth parameter is the help context, a number indicating which page of the Help system should be
invoked if the user presses F1. Simply write 0 if the application has no help file, as in this case.

The function also has a return value, which I’ve just ignored, using it as if it were a procedure. In any case, it’s
important to know that the function returns an identifier of the button that the user clicked to close the message
box. This is useful only if the message box has more than one button.

Programmers unfamiliar with the Pascal language, particularly those who use C/C++,
might be confused by the distinction between a function and a procedure. In Pascal, there
are two different keywords to define procedures and functions. The only difference
between the two is that functions have a return value.

After you have written this line of code, you should be able to run the program. When you click on the
button, you’ll see the message box shown below.

Information Ed |

@ Hello, guys

Every time the user clicks on the push button in the form, a message is displayed. What if the mouse is
pressed outside that area? Nothing happens. Of course, we can add some new code to handle this event. We only
need to add an OnC11ick event to the form itself. To do this, move to the Events page of the Object Inspector
and select the form. Then double-click at the right side of the OnC11ick event, and you’ll end up in the proper
position in the edit window. Now add a new call to the MessageD1g function, as in the following code:

procedure TForml.FormClick (Sender: TObject) ;
begin
MessageDlg ('You have clicked outside of the button',
mtWarning, [mbOK], O0);
end;

With this new version of the program, if the user clicks on the button, the hello message is displayed, but
if the user misses the button, a warning message appears. Notice that I’ve written the code on two lines, instead
of one. The Pascal compiler completely ignores new lines, white spaces, tab spaces, and similar formatting
characters. Program statements are separated by semicolons (;), not by new lines.

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 16

There is one case in which Delphi doesn’t completely ignore line breaks: Strings cannot
extend across multiple lines. In some cases, you can split a very long string into two
different strings, written on two lines, and merge them by writing one after the other.

Compiling and Running a Program

Before we make any further changes to our Hello program, let’s stop for a moment to consider what
happens when you run the application. When you click on the toolbar Run button or select Run | Run, Delphi
does the following:

1: Compiles the Pascal source code file describing the form.

2: Compiles the project file.

3: Builds the executable (EXE) file, linking the proper libraries.
4: Runs the executable file, usually in debug mode.

In early versions of Delphi, the executable file you obtained was invariably a stand-alone
program. Starting with version 3, Delphi allows you to link all the required libraries into the
executable file, but you can also specify the use of separate run-time packages, making
the executable file much smaller.

The key point is that when you ask Delphi to run your application, it compiles it into an executable file.
You can easily run this file from the Windows Explorer or using the Run command on the Start button.
Compiling this program as usual, linking all the required library code, produces an executable of about a couple
of hundred Kb. By using run-time packages, this can shrink the executable to about 20 Kb. Simply select the
Project | Options menu command, move to the Packages page, and select the check box Build with runtime
packages:

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 17

Project Options il
Faormz I Application I Cormpiler | Linker |
Directories/Conditionals I Yersion |nfa Fackages

— Design packages

B orland &ctionB ar Components

Baorland 400 DB Components

Borland Baze Cached ClientD atazet Component

Borand BDE DB Components

Borland CL< Database Components

Borland CL< Standard Components ;I

| c:hprogram filezhborland' delphig BinhdclactE0 bpl

Add... Bemove Edlit | Components |

— Runtime packages

I i_ﬂuild with runtime packages

Ivcl;rtI;u:II:urtI;au:IDrtl;vcldb;vcl:-:;bdertl;il:u:-:press;dsnap;cds;bdecd Add...

[~ Defaul ok Cancel | Help

Packages are dynamic link libraries containing Delphi components (the Visual Components Library). By
using packages you can make an executable file much smaller. However, the program won’t run unless the proper
dynamic link libraries (such as vc160 .bpl) are available on the computer where you want to run the program.
The BPL extensions stands for Borland Package Libraries; it is the extension used by Delphi (and C++Builder)

packages, which are technically DLL files. Using this extension makes it easier to recognize them (and find them
on a hard disk).

If you add the size of this dynamic library to that of the small executable file, the total amount of disk
space required by the program built with run-time packages is much bigger than the space required by the bigger
stand-alone executable file. For this reason the use of packages is not always recommended. The great advantage
of Delphi over competing development tools is that you can easily choose whether to use the stand-alone
executable or the small executable with run-time packages.

In both cases, Delphi executables are extremely fast to compile, and the speed of the

resulting application is comparable with that of a C or C++ program. Delphi compiled code
runs much faster (at least 10 times faster) than the equivalent code in interpreted or semi-
compiled tools.

Some users cannot believe that Delphi generates real executable code, because when you run a small
program, its main window appears almost immediately, as happens in some interpreted environments. To see for
yourself, try this: Open the Environment Options dialog box (using Tools | Options), move to the Preferences

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 18

page, and turn on the Show Compile Progress option. Now select Project | Build All. You’ll see a dialog box with
the compilation status. You’ll find that this takes just a few seconds, or even less on a fast machine.

In the tradition of Borland’s Turbo Pascal compilers, the Object Pascal compiler embedded in Delphi
works very quickly. For a number of technical reasons, it is much faster than any C++ compiler. If you try using
the new Borland C++ Builder development environment (which is very similar to Delphi) the compilation
requires more time, particularly the first time you build an application. One reason for the higher speed of the
Delphi compiler is that the language definition is simpler. Another is that the Pascal compilers and linkers have
less work to do to include libraries or other compiled source files in a program, because of the structure of units.

Changing Properties at Run-Time

Let’s return to the Hello application. We now want to try to change some properties at run-time. For
example, we might change the text of HelloButton from Say hello to Say hello again after the first time a user
clicks on it. You may also need to widen the button, as the caption becomes longer. This is really simple. You
only need to change the code of the HelloButtonClick procedure as follows:

procedure TForml.HelloButtonClick (Sender: TObject) ;

begin
MessageDlg ('Hello, guys', mtInformation, [mbOK], 0);
btnHello.Caption := 'Say Hello Again';

end;

The Pascal language uses the : = operator to express an assignment and the = operator
to test for equality. At the beginning, this can be confusing for programmers coming from
other languages. For example in C and C++, the assignment operator is =, and the
equality test is ==. After a while, you'll get used to it. In the meantime, if you happen to use
= instead of : =, you'll get an error message from the compiler.

A property such as Caption can be changed at run-time very easily, by using an assignment statement.
Most properties can be changed at run-time, and some can be changed only at run-time. You can easily spot this
last group: They are not listed in the Object Inspector, but they appear in the Help file for the component. Some
of these run-time properties are defined as read-only, which means that you can access their value but cannot
change it.

Adding Code to the Program

Our program is almost finished, but we still have a problem to solve, which will require some real
coding. The button starts in the center of the form, but will not remain there when you resize the form. This
problem can be solved in two radically different ways.

One solution is to change the border of the form to a thin frame, so that the form cannot be resized at run-
time. Just move to the BorderStyle property of the form, and choose bsSingle instead of bsSizeable
from the combo box. The other approach is to write some code to move the button to the center of the form each

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 19

time the form is resized, and that’s what we’ll do next. Although it might seem that most of your work in
programming with Delphi is just a matter of selecting options and visual elements, there comes a time when you
need to write code. As you become more expert, the percentage of the time spent writing code will generally
increase.

When you want to add some code to a program, the first question you need to ask yourself is Where? In
an event-driven environment, the code is always executed in response to an event. When a form is resized, an
event takes place: OnResize. Select the form in the Object Inspector and double-click next to OnResize in
the Events page. A new procedure is added to the source file of the form. Now you need to type some code in the
editor, as follows:

procedure TForml.FormResize (Sender: TObject) ;
begin
BtnHello.Top := Forml.ClientHeight div 2 -
BtnHello.Height div 2;
BtnHello.Left := Forml.ClientWidth div 2 -
BtnHello.Width div 2;
end;

+[" Hello _ O] x|

E Launch Example

Say Hello

+F Helo M=l E3

To set the Top and Left properties of the button — that is, the position of its upper-left corner — the
program computes the center of the frame, dividing the height and the width of the internal area or client area of
the frame by 2, and then subtracts half the height or width of the button. Note also that if you use the Height
and Width properties of the form, instead of the ClientWidth and ClientHeight properties, you will
refer to the center of the whole window, including the caption at the top border. This final version of the example
works quite well as you can see below.

This figure includes two versions of the form, with different sizes. By the way, this figure is a real
snapshot of the screen. Once you have created a Windows application, you can run several copies of it at the
same time by using the Explorer. By contrast, the Delphi environment can run only one copy of a program. When
you run a program within Delphi, you start the integrated debugger, and it cannot debug two programs at the
same time — not even two copies of the same program — unless you are using Windows NT/2000/XP.

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 20

A Two-Way Tool

In the Hello example, we have written three small portions of code, to respond to three different events.
Each portion of code was part of a different procedure (actually a method, as you’ll learn reading Chapter 5). But
where does the code we write end up? The source code of a form is written in a single Pascal language source
file, the one we’ve named HELLOF . PAS. This file evolves and grows not only when you code the response of
some events, but also as you add components to the form. The properties of these components are stored together
with the properties of the form in a second file, named HELLOF . DFM.

Delphi can be defined as a two-way tool, since everything you do in the visual environment ends up in
some code. Nothing is hidden away and inaccessible. You have the complete code, and although some of it might
be fairly complex, you can edit everything. Of course, it is easier to use only the visual tools, at least until you are
an expert Delphi programmer.

The term two-way tool also means that you are free to change the code that has been produced, and then
go back to the visual tools. This is true as long as you follow some simple rules.

Looking at the Source Code

Let’s take a look at what Delphi has generated from our operations so far. Every action has an effect —
in the Pascal code, in the code of the form, or in both. When you start a new, blank project, the empty form has
some code associated with it, as in the following listing.

unit Unitl;

interface
uses

SysUtils, Windows, Messages, Classes, Graphics,
Controls, Forms, Dialogs;

type
TForml = class (TForm)
private
{ Private declarations } =
X :| Launch Example
public :
{ Public declarations }
end;
var

Forml: TForml;
implementation
{SR *.DFM}

end.
The file, named Unit1, uses a number of units and defines a new data type (a class) and a new variable
(an object of that class). The class is named TForm1, and it is derived from TForm. The object is Form1, of the
new type TForml.

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 21

Units are the modules into which a Pascal program is divided. When you start a new
project, Delphi generates a program module and a unit that defines the main form.
Each time you add a form to a Delphi program, you add a new unit. Units are then
compiled separately and linked into the main program. By default, unit files have a
.PAS extension and program files have a .DPR extension.

If you rename the files as suggested in the example, the code changes slightly, since the name of the unit
must reflect the name of the file. If you name the file Hel1lof . pas, the code begins with

| unit Hellof;

As soon as you start adding new components, the form class declaration in the source code changes. For
example, when you add a button to the form, the portion of the source code defining the new data type becomes
the following:
type

TForml = class (TForm)
Buttonl: TButton;

Now if you change the button’s Name property (using the Object Inspector) to BtnHello, the code
changes slightly again:
type
TForml = class (TForm)
BtnHello: TButton;

Setting properties other than the name has no effect in the source code. The properties of the form and its
components are stored in a separate form description file (with a DFM extension).

Adding new event handlers has the biggest impact on the code. Each time you define a new handler for
an event, a line is added to the data type definition of the form, an empty method body is added in the
implementation part, and some information is stored in the form description file, too.
unit HelloForm;

interface

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls;

type
TForml = class (TForm)
btnHello: TButton;
procedure btnHelloClick (Sender: TObject) ;
procedure FormCreate (Sender: TObject) ;
procedure FormResize (Sender: TObject) ;

private
{ Private declarations }
public
{ Public declarations }
end;
var

Forml: TForml;

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 22

implementation

{$R *.DFM}

procedure TForml.btnHelloClick (Sender: TObject) ;

begin
MessageDlg ('Hello, guys', mtInformation, [mbOK], 0);
btnHello.Caption := 'Say Hello Again';

end;

procedure TForml.FormCreate (Sender: TObject) ;
begin
MessageDlg ('You have clicked outside of the button',
mtWarning, [mbOK], 0);
end;

procedure TForml.FormResize (Sender: TObject) ;
begin
BtnHello.Top := Forml.ClientHeight div 2 -
BtnHello.Height div 2;
BtnHello.Left := Forml.ClientWidth div 2 -
BtnHello.Width div 2;
end;

end.

It is worth noting that there is a single file for the whole code of the form, not just small fragments. Of
course, the code is only a partial description of the form. The source code determines how the form and its
components react to events. The form description (the DFM file) stores the values of the properties of the form
and of its components. In general, source code defines the actions of the system, and form files define the initial
state of the system.

The Textual Description of the Form

As I’ve just mentioned, along with the PAS file containing the source code, there is another file
describing the form, its properties, its components, and the properties of the components. This is the DFM file, a
binary or text file (this latter option has been introduced with Delphi 5). Whatever the format, if you load this file
in the Delphi code editor, it will be converted into a textual description. This might give the false impression that
the DFM file is indeed a text file, but this can be only if you’ve selected the corresponding option (available since
Delphi 5).

You can open the textual description of a form simply by selecting the shortcut menu
of the form designer (that is, right-clicking on the surface of the form at design-time)
and selecting the View as Text command. This closes the form, saving it if
necessary, and opens the DFM file in the editor. You can later go back to the form
using the View as Form command of the local menu of the editor window. The
alternative is to open the DFM file directly in the Delphi editor.

Marco Cantu's Essential Delphi — Copyright 1996-2002 Marco Cantu — www.marcocantu.com/edelphi 23

To understand what is stored in the DFM file, you can look at the next listing, which shows the textual
description of the form of the first version of the Hello example. This is exactly the code you’ll see if you give

the View as Text command in the loca